Alex S. Gardner

Learn More
Glaciers distinct from the Greenland and Antarctic Ice Sheets are losing large amounts of water to the world's oceans. However, estimates of their contribution to sea level rise disagree. We provide a consensus estimate by standardizing existing, and creating new, mass-budget estimates from satellite gravimetry and altimetry and from local glaciological(More)
The Randolph Glacier Inventory (RGI) is a globally complete collection of digital outlines of glaciers, excluding the ice sheets, developed to meet the needs of the Fifth Assessment of the Intergovernmental Panel on Climate Change for estimates of past and future mass balance. The RGI was created with limited resources in a short period. Priority was given(More)
Mountain glaciers and ice caps are contributing significantly to present rates of sea level rise and will continue to do so over the next century and beyond. The Canadian Arctic Archipelago, located off the northwestern shore of Greenland, contains one-third of the global volume of land ice outside the ice sheets, but its contribution to sea-level change(More)
[1] We present a computationally simple, theoretically based parameterization for the broadband albedo of snow and ice that can accurately reproduce the theoretical broadband albedo under a wide range of snow, ice, and atmospheric conditions. Depending on its application, this parameterization requires between one and five input parameters. These parameters(More)
Climate-driven changes in land water storage and their contributions to sea level rise have been absent from Intergovernmental Panel on Climate Change sea level budgets owing to observational challenges. Recent advances in satellite measurement of time-variable gravity combined with reconciled global glacier loss estimates enable a disaggregation of(More)
Glacier mass-balance models that employ the degree-day method of melt modeling are most commonly driven by surface air temperatures that have been downscaled over the area of interest, using digital elevation models and assuming a constant free air lapse rate that is often taken to be the moist adiabatic lapse rate (MALR: –6.58Ckm). Air-temperature lapse(More)
[1] A parameterization for broadband snow surface albedo, based on snow grain size evolution, cloud optical thickness, and solar zenith angle, is implemented into a regional climate model for Antarctica and validated against field observations of albedo for the period 1995–2004. Over the Antarctic continent, modeled snow grain size exhibits expected(More)
The darkening effects of biological impurities on ice and snow have been recognised as a control on the surface energy balance of terrestrial snow, sea ice, glaciers and ice sheets. With a heightened interest in understanding the impacts of a changing climate on snow and ice processes, quantifying the impact of biological impurities on ice and snow albedo(More)
Living and working among Tanzania's Hadzabe people — one of the world's last remaining hunter-gatherer groups — I witnessed the extraordinarily intimate relationship they share with microbes in their environment. This potentially provides them with a health-enriching source of gut microbial diversity, lost long ago in the modern lifestyle of the developed(More)
Mountain glaciers around the globe are retreating rapidly, but the exact mechanisms causing the retreat are not well understood. Is warming of the atmosphere the key driver? What are the roles of changes in surface albedo due to contaminants and snow optical grain size and surface roughness? Improved understanding of the response of mountain glaciers to(More)
  • 1