Learn More
The analysis of MR images is evolving from qualitative to quantitative. More and more, the question asked by clinicians is how much and where, rather than a simple statement on the presence or absence of abnormalities. The authors present a study in which the results obtained with a semiautomatic, multispectral segmentation technique are quantitatively(More)
A novel approach to correcting for intensity nonuniformity in magnetic resonance (MR) data is described that achieves high performance without requiring a model of the tissue classes present. The method has the advantage that it can be applied at an early stage in an automated data analysis, before a tissue model is available. Described as nonparametric(More)
After conception and implementation of any new medical image processing algorithm, validation is an important step to ensure that the procedure fulfills all requirements set forth at the initial design stage. Although the algorithm must be evaluated on real data, a comprehensive validation requires the additional use of simulated data since it is impossible(More)
The quantitative analysis of magnetic resonance imaging (MRI) data has become increasingly important in both research and clinical studies aiming at human brain development, function, and pathology. Inevitably, the role of quantitative image analysis in the evaluation of drug therapy will increase, driven in part by requirements imposed by regulatory(More)
Young healthy participants spontaneously use different strategies in a virtual radial maze, an adaptation of a task typically used with rodents. Functional magnetic resonance imaging confirmed previously that people who used spatial memory strategies showed increased activity in the hippocampus, whereas response strategies were associated with activity in(More)
Human total brain size is consistently reported to be approximately 8-10% larger in males, although consensus on regionally specific differences is weak. Here, in the largest longitudinal pediatric neuroimaging study reported to date (829 scans from 387 subjects, ages 3 to 27 years), we demonstrate the importance of examining size-by-age trajectories of(More)
An algorithm for improved automatic segmentation of gross anatomical structures of the human brain is presented that merges the output of a tissue classification process with gross anatomical region masks, automatically defined by non-linear registration of a given data set with a probabilistic anatomical atlas. Experiments with 20 real MRI volumes(More)
Multiple sclerosis (MS) is thought to predominantly affect white matter (WM). Recently, however, loss of cortical gray matter has also been described. Little is known about the cause of cortical atrophy in MS, whether it occurs early in the disease course, and whether it affects all cortical regions equally or if there is a preferential pattern of focal(More)
The analysis of neuroimaging databases typically involves a large number of inter-connected steps called a pipeline. The pipeline system for Octave and Matlab (PSOM) is a flexible framework for the implementation of pipelines in the form of Octave or Matlab scripts. PSOM does not introduce new language constructs to specify the steps and structure of the(More)
A novel, fully automatic, adaptive, robust procedure for brain tissue classification from 3D magnetic resonance head images (MRI) is described in this paper. The procedure is adaptive in that it customizes a training set, by using a 'pruning' strategy, such that the classification is robust against anatomical variability and pathology. Starting from a set(More)