Learn More
Extensive production and utilization of aromatic aldehydes and their derivatives without proper certification is alarming with regard to environmental safety. This concern motivated our construction of predictive quantitative structure-activity relationship (QSAR) models for the toxicity of aldehydes to the ecologically important species Tetrahymena(More)
The prediction of pK(a) from a single ab initio bond length has been extended to provide equations for benzoic acids and anilines. The HF/6-31G(d) level of theory is used for all geometry optimisations. Similarly to phenols (Part 2 of this series of publications), the meta-/para-substituted benzoic acids can be predicted from a single model constructed from(More)
The prediction of pK(a) continues to attract much attention with ongoing investigations into new ways to predict pK(a) accurately, where predicted pK(a) values deviate less than 0.50 log units from experiment. We show that a single descriptor, i.e. an ab initio bond length, can predict pK(a). The emphasis was placed on model simplicity and a demonstration(More)
Knowing the pK(a) of a compound gives insight into many properties relevant to many industries, in particular the pharmaceutical industry during drug development processes. In light of this, we have used the theory of Quantum Chemical Topology (QCT), to provide ab initio descriptors that are able to accurately predict pK(a) values for 228 carboxylic acids.(More)
  • 1