Learn More
We describe a novel slow oscillation in intracellular recordings from cortical association areas 5 and 7, motor areas 4 and 6, and visual areas 17 and 18 of cats under various anesthetics. The recorded neurons (n = 254) were antidromically and orthodromically identified as corticothalamic or callosal elements receiving projections from appropriate thalamic(More)
The newly described slow cortical rhythm (approximately 0.3 Hz), whose depolarizing-hyperpolarizing components are analyzed in the preceding article, is now investigated from the standpoint of its relations with delta (1-4 Hz) and spindle (7-14 Hz) rhythmicity. Regular-spiking and intrinsically bursting cortical neurons were mostly recorded from association(More)
As most afferent axons to the thalamus originate in the cerebral cortex, we assumed that the slow (< 1 Hz) cortical oscillation described in the two companion articles is reflected in reticular (RE) thalamic and thalamocortical cells. We hypothesized that the cortically generated slow rhythm would appear in the thalamus in conjunction with delta and spindle(More)
1. The pedunculopontine tegmental (PPT) cholinergic nucleus and the locus coeruleus (LC) noradrenergic nucleus were electrically stimulated to investigate their effects on the recently described slow oscillation (approximately 0.3 Hz) of neocortical neurons. Intracellular recordings of slowly oscillating, regular-spiking and intrinsically bursting neurons(More)
Physical exercise increases brain activity through mechanisms not yet known. We now report that in rats, running induces uptake of blood insulin-like growth factor I (IGF-I) by specific groups of neurons throughout the brain. Neurons accumulating IGF-I show increased spontaneous firing and a protracted increase in sensitivity to afferent stimulation.(More)
1. Electrophysiologically identified thalamocortical neurones have been intra- and extracellularly recorded in acutely prepared cats, under different anaesthetic conditions. 2. A slow (0.5-4 Hz) membrane potential oscillation was observed in thalamocortical cells recorded in motor, sensory, associational and intralaminar thalamic nuclei. The oscillation(More)
1. The intrinsic properties and synaptic responses of association cortical neurons (n = 179) recorded from cat's areas 5 and 7 were studied in vivo. Intracellular recordings were performed under urethane anesthesia. Resting membrane potential (Vm) was -71.7 +/- 1.2 (SE) mV, amplitude of action potential was 83.7 +/- 2.3 mV, and input resistance was 18.4 +/-(More)
A slow (0.5-4 Hz) oscillation of thalamic neurons was recently described and attributed to the interplay of two intrinsic currents. In this study, we investigated the network modulation of this intrinsic thalamic oscillation within the frequency range of EEG sleep delta-waves. We performed intracellular and extracellular recordings of antidromically(More)
Increasing evidence indicates that circulating insulin-like growth factor I (IGF-I) acts as a peripheral neuroactive signal participating not only in protection against injury but also in normal brain function. Epidemiological studies in humans as well as recent evidence in experimental animals suggest that blood-borne IGF-I may be involved in cognitive(More)
Recent studies have revealed that the thalamus does not only generate spindle oscillations (7-14 Hz), but that it also participates in the genesis of a slower (less than 4 Hz) rhythm within the frequency range of delta waves on the electroencephalogram. In thalamic cells, delta is an intrinsic oscillation consisting of low-threshold spikes alternating with(More)