Alex Meistrenko

Learn More
We present an efficient method for simulating a stationary Gaussian noise with an arbitrary covariance function, and then we study numerically the impact of time-correlated noise on the time evolution of a (1+1)-dimensional generalized Langevin equation by comparing also to analytical results. Finally, we apply our method to the generalized Langevin(More)
We apply a Boltzmann approach to the kinetic regime of a relativistic Bose-Einstein condensate of scalar bosons by decomposing the one-particle distribution function in a condensate part and a nonzero momentum part of excited modes, leading to a coupled set of evolution equations which are then solved efficiently with an adaptive higher order Runge-Kutta(More)
Particles and fields are standard components in numerical calculations like transport simulations in nuclear physics and have well understood dynamics. Still, a common problem is the interaction between particles and fields due to their different formal description. Particle interactions are discrete, point-like events while field dynamics is described with(More)
Particles and fields are standard components in numerical calculations like transport simulations in nuclear physics and have well-understood dynamics. Still, a common problem is the interaction between particles and fields due to their different formal description. Particle interactions are discrete, pointlike events while field dynamics is described with(More)
  • 1