Alex M. Fichtenholtz

Learn More
As more clinically relevant cancer genes are identified, comprehensive diagnostic approaches are needed to match patients to therapies, raising the challenge of optimization and analytical validation of assays that interrogate millions of bases of cancer genomes altered by multiple mechanisms. Here we describe a test based on massively parallel DNA(More)
We report the development of a biostable methotrexate-immobilized iron oxide nanoparticle drug carrier that may potentially be used for real-time monitoring of drug delivery through magnetic resonance imaging. Methotrexate (MTX) was immobilized on the nanoparticle surface via a poly(ethylene glycol) self-assembled monolayer (PEG SAM). The cytotoxicity of(More)
UNLABELLED Focal amplification and activating point mutation of the MET gene are well-characterized oncogenic drivers that confer susceptibility to targeted MET inhibitors. Recurrent somatic splice site alterations at MET exon 14 (METex14) that result in exon skipping and MET activation have been characterized, but their full diversity and prevalence across(More)
The spectrum of somatic alterations in hematologic malignancies includes substitutions, insertions/deletions (indels), copy number alterations (CNAs), and a wide range of gene fusions; no current clinically available single assay captures the different types of alterations. We developed a novel next-generation sequencing-based assay to identify all classes(More)
Glial tumors have been heavily studied and sequenced, leading to scores of findings about altered genes. This explosion in knowledge has not been matched with clinical success, but efforts to understand the synergies between drivers of glial tumors may alleviate the situation. We present a novel molecular classification system that captures the(More)
  • 1