Learn More
Self-renewal of human embryonic stem cells and human induced pluripotent stem cells (hiPSCs)-known as pluripotent stem cells (PSC)-is influenced by culture conditions, including the substrate on which they are grown. However, details of the molecular mechanisms interconnecting the substrate and self-renewal of these cells remain unclear. We describe a(More)
Substrate composition significantly impacts human pluripotent stem cell (hPSC) self-renewal and differentiation, but relatively little is known about the role of endogenously produced extracellular matrix (ECM) components in regulating hPSC fates. Here we identify α-5 laminin as a signature ECM component endogenously synthesized by undifferentiated hPSCs(More)
Stem cells reside in specialized niches in vivo. Specific factors, including the extracellular matrix (ECM), in these niches are directly responsible for maintaining the stem cell population. During development, components of the stem cell microenvironment also control differentiation with precise spatial and temporal organization. The stem cell(More)
Tissue engineering and advanced manufacturing of human stem cells requires a suite of tools to control gene expression spatiotemporally in culture. Inducible gene expression systems offer cell-extrinsic control, typically through addition of small molecules, but small molecule inducers typically contain few functional groups for further chemical(More)
  • 1