Alex Krizhevsky

Learn More
Groups at MIT and NYU have collected a dataset of millions of tiny colour images from the web. It is, in principle, an excellent dataset for unsupervised training of deep generative models, but previous researchers who have tried this have found it dicult to learn a good set of lters from the images. We show how to train a multi-layer generative model that(More)
Deep neural nets with a large number of parameters are very powerful machine learning systems. However, overfitting is a serious problem in such networks. Large networks are also slow to use, making it difficult to deal with overfitting by combining the predictions of many different large neural nets at test time. Dropout is a technique for addressing this(More)
When a large feedforward neural network is trained on a small training set, it typically performs poorly on held-out test data. This “overfitting” is greatly reduced by randomly omitting half of the feature detectors on each training case. This prevents complex co-adaptations in which a feature detector is only helpful in the context of several other(More)
We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0%, respectively, which is considerably better than the previous state-of-the-art. The neural network, which has(More)
Deep belief nets have been successful in modeling handwritten characters, but it has proved more difficult to apply them to real images. The problem lies in the restricted Boltzmann machine (RBM) which is used as a module for learning deep belief nets one layer at a time. The Gaussian-Binary RBMs that have been used to model real-valued data are not a good(More)
We describe a learning-based approach to handeye coordination for robotic grasping from monocular images. To learn hand-eye coordination for grasping, we trained a large convolutional neural network to predict the probability that task-space motion of the gripper will result in successful grasps, using only monocular camera images and independently of(More)
We describe how to train a two-layer convolutional Deep Belief Network (DBN) on the 1.6 million tiny images dataset. When training a convolutional DBN, one must decide what to do with the edge pixels of teh images. As the pixels near the edge of an image contribute to the fewest convolutional lter outputs, the model may see it t to tailor its few(More)
The artificial neural networks that are used to recognize shapes typically use one or more layers of learned feature detectors that produce scalar outputs. By contrast, the computer vision community uses complicated, hand-engineered features, like SIFT [6], that produce a whole vector of outputs including an explicit representation of the pose of the(More)
We show how to learn many layers of features on color images and we use these features to initialize deep autoencoders. We then use the autoencoders to map images to short binary codes. Using semantic hashing [6], 28-bit codes can be used to retrieve images that are similar to a query image in a time that is independent of the size of the database. This(More)