Alex Klinkhamer

Learn More
This paper presents a sound and complete method for algorithmic design of self-stabilizing network protocols. While the design of self-stabilization is known to be a hard problem, several sound (but incomplete) heuristics exists for algorithmic design of self-stabilization. The essence of the proposed approach is based on variable superposition and(More)
This paper investigates the complexity of adding nonmasking fault tolerance, where a nonmasking fault-tolerant program guarantees recovery from states reached due to the occurrence of faults to states from where its specifications are satisfied. We first demonstrate that adding nonmasking fault tolerance to low atomicity programs-where processes have(More)
This paper presents a novel two-step method for automated design of self-stabilization. The first step enables the specification of legitimate states and an intuitive (but imprecise) specification of the desired functional behaviors in the set of legitimate states (hence the term “shadow”). After creating the shadow specifications, we(More)
  • 1