Alex Klinkhamer

Learn More
This paper investigates the complexity of designing SelfStabilizing (SS) distributed programs, where an SS program meets two properties, namely closure and convergence. Convergence requires that, from any state, the computations of an SS program reach a set of legitimate states (a.k.a. invariant). Upon reaching a legitimate state, the computations of an SS(More)
This paper investigates the complexity of adding nonmasking fault tolerance, where a nonmasking fault-tolerant program guarantees recovery from states reached due to the occurrence of faults to states from where its specifications are satisfied. We first demonstrate that adding nonmasking fault tolerance to low atomicity programs-where processes have(More)
This paper presents a novel two-step method for automated design of self-stabilization. The first step enables the specification of legitimate states and an intuitive (but imprecise) specification of the desired functional behaviors in the set of legitimate states (hence the term “shadow”). After creating the shadow specifications, we(More)
  • 1