Learn More
We obtain two results about the proof complexity of deep inference: (1) Deep-inference proof systems are as powerful as Frege ones, even when both are extended with the Tseitin extension rule or with the substitution rule; (2) there are analytic deep-inference proof systems that exhibit an exponential speedup over analytic Gentzen proof systems that they(More)
We introduce 'atomic flows': they are graphs obtained from derivations by tracing atom occurrences and forgetting the logical structure. We study simple manipulations of atomic flows that correspond to complex reductions on derivations. This allows us to prove, for propositional logic, a new and very general normalisation theorem, which contains cut(More)
In usual proof systems, like the sequent calculus, only a very limited way of combining proofs is available through the tree structure. We present in this paper a logic-independent proof calculus, where proofs can be freely composed by connectives, and prove its basic properties. The main advantage of this proof calculus is that it allows to avoid certain(More)
We study a system, called NEL, which is the mixed commutative/noncommutative linear logic BV augmented with linear logic's exponentials. Equivalently, NEL is MELL augmented with the noncommutative self-dual connective seq. In this article, we show a basic compositionality property of NEL, which we call <i>decomposition</i>. This result leads to a(More)
Jeřábek showed that analytic propositional-logic deep-inference proofs can be constructed in quasipolynomial time from nonanalytic proofs. In this work, we improve on that as follows: 1) we significantly simplify the technique; 2) our normalisation procedure is direct, i.e., it is internal to deep inference. The paper is self-contained, and provides a(More)
This work belongs to a wider effort aimed at eliminating syntactic bureaucracy from proof systems. In this paper, we present a novel cut elimination procedure for classical propositional logic. It is based on the recently introduced atomic flows: they are purely graphical devices that abstract away from much of the typical bureaucracy of proofs. We make(More)
In this paper we deene a logic programming language, called SMR, whose main computational mechanism is multiset rewriting. It features a guarded choice capability and, above all, a sequential and-like operator. The language is deened starting from a core language, LM, a subset of Andreoli and Pareschi's LO, which is directly derived from linear logic. LM is(More)