Learn More
This article introduces a logical system, called BV, which extends multiplicative linear logic by a noncommutative self-dual logical operator. This extension is particularly challenging for the sequent calculus, and so far, it is not achieved therein. It becomes very natural in a new formalism, called the <i>calculus of structures</i>, which is the main(More)
We obtain two results about the proof complexity of deep inference: (1) Deep-inference proof systems are as powerful as Frege ones, even when both are extended with the Tseitin extension rule or with the substitution rule; (2) there are analytic deep-inference proof systems that exhibit an exponential speedup over analytic Gentzen proof systems that they(More)
Jeřábek showed that analytic propositional-logic deep-inference proofs can be constructed in quasipolynomial time from nonanalytic proofs. In this work, we improve on that as follows: 1) we significantly simplify the technique; 2) our normalisation procedure is direct, i.e., it is internal to deep inference. The paper is self-contained, and provides a(More)
1 Brief Overview The calculus of structures is a new proof theoretical formalism, introduced by myself in 1999 and initially developed by members of my group in Dresden since 2000. It exploits a new symmetry made possible by deep inference. We can present deductive systems in the calculus of structures and analyse their properties, as we do in the sequent(More)
We introduce 'atomic flows': they are graphs obtained from derivations by tracing atom occurrences and forgetting the logical structure. We study simple manipulations of atomic flows that correspond to complex reductions on derivations. This allows us to prove, for propositional logic, a new and very general normalisation theorem, which contains cut(More)
In usual proof systems, like the sequent calculus, only a very limited way of combining proofs is available through the tree structure. We present in this paper a logic-independent proof calculus, where proofs can be freely composed by connectives, and prove its basic properties. The main advantage of this proof calculus is that it allows to avoid certain(More)
This work belongs to a wider effort aimed at eliminating syntactic bureaucracy from proof systems. In this paper, we present a novel cut elimination procedure for classical propositional logic. It is based on the recently introduced `atomic flows': they are purely graphical devices that abstract away from much of the typical bureaucracy of proofs. We make(More)