Alessandro Vullo

Learn More
DISULFIND is a server for predicting the disulfide bonding state of cysteines and their disulfide connectivity starting from sequence alone. Optionally, disulfide connectivity can be predicted from sequence and a bonding state assignment given as input. The output is a simple visualization of the assigned bonding state (with confidence degrees) and the most(More)
MOTIVATION We focus on the prediction of disulfide bridges in proteins starting from their amino acid sequence and from the knowledge of the disulfide bonding state of each cysteine. The location of disulfide bridges is a structural feature that conveys important information about the protein main chain conformation and can therefore help towards the(More)
The formation of disulphide bridges among cysteines is an important feature of protein structures. Here we develop new methods for the prediction of disulphide bond connectivity. We first build a large curated data set of proteins containing disulphide bridges and then use 2-Dimensional Recursive Neural Networks to predict bonding probabilities between(More)
We describe Distill, a suite of servers for the prediction of protein structural features: secondary structure; relative solvent accessibility; contact density; backbone structural motifs; residue contact maps at 6, 8 and 12 Angstrom; coarse protein topology. The servers are based on large-scale ensembles of recursive neural networks and trained on large,(More)
Intrinsically disordered proteins have long stretches of their polypeptide chain, which do not adopt a single native structure composed of stable secondary and tertiary structure in the absence of binding partners. The prediction of intrinsically disordered regions in proteins from sequence is increasingly becoming of interest, as the presence of many such(More)
Cysteines may form covalent bonds, known as disulfide bridges, that have an important role in stabilizing the native conformation of proteins. Several methods have been proposed for predicting the bonding state of cysteines, either using local context or using global protein descriptors. In this paper we introduce an SVM based predictor that operates in two(More)
The Ensembl project ( is a system for genome annotation, analysis, storage and dissemination designed to facilitate the access of genomic annotation from chordates and key model organisms. It provides access to data from 87 species across our main and early access Pre! websites. This year we introduced three newly annotated species(More)
CSpritz is a web server for the prediction of intrinsic protein disorder. It is a combination of previous Spritz with two novel orthogonal systems developed by our group (Punch and ESpritz). Punch is based on sequence and structural templates trained with support vector machines. ESpritz is an efficient single sequence method based on bidirectional(More)
Ensembl ( creates tools and data resources to facilitate genomic analysis in chordate species with an emphasis on human, major vertebrate model organisms and farm animals. Over the past year we have increased the number of species that we support to 77 and expanded our genome browser with a new scrollable overview and improved(More)
Ensembl ( is a genomic interpretation system providing the most up-to-date annotations, querying tools and access methods for chordates and key model organisms. This year we released updated annotation (gene models, comparative genomics, regulatory regions and variation) on the new human assembly, GRCh38, although we continue to(More)