Alessandro Troisi

Learn More
Agent-based modeling is a technique currently used to simulate complex systems in computer science and social science. Here, we propose its application to the problem of molecular self-assembly. A system is allowed to evolve from a separated to an aggregated state following a combination of stochastic, deterministic, and adaptive rules. We consider the(More)
Much current experimental research on transport in molecular junctions focuses on finite voltages, where substantial polarization-induced nonlinearities may result in technologically relevant device-type responses. Because molecules have strong polarization responses to changing charge state or external field, molecules isolated between electrodes can show(More)
The theories developed since the fifties to describe charge transport in molecular crystals proved to be inadequate for the most promising classes of high mobility molecular semiconductors identified in the recent years, including for example pentacene and rubrene. After reviewing at an elementary level the classical theories, which still provide the(More)
The charge recombination reaction from the semiconductor (TiO(2)) conduction band to electron accepting electrolytes (I(2), I(2)(-), I(3)(-)) in dye-sensitised solar cells is investigated theoretically. The non-adiabatic theory of electron transfer has been adapted to compute the charge transfer rate measured in different experimental settings (namely with(More)
Using inelastic electron tunneling spectroscopy (IETS) to measure the vibronic structure of nonequilibrium molecular transport, aided by a quantitative interpretation scheme based on Green's function-density functional theory methods, we are able to characterize the actual pathways that the electrons traverse when moving through a molecule in a molecular(More)
Under the assumptions that no two sp 3 carbon atoms are adjacent in the end product of bromination of a fullerene and that the residual π system is a closed shell, graph theory predicts maximum stoichiometries C 60 Br 24 , C 70 Br 26 , C 76 Br 28 , C 84 Br 32 and rules out all but 58 of the ~10 23 addition patterns conceivable for these molecules.
Control over the interchromophore separation, their angular relationship, and the spatial overlap of their electronic clouds in several ZnP-C(60) dyads (ZnP=zinc porphyrin) is used to modulate the rates of intramolecular electron transfer. For the first time, a detailed analysis of the charge transfer absorption and emission spectra, time-dependent(More)
It is normally assumed that electrons and holes in organic solar cells are generated by the dissociation of excitons at the interface between donor and acceptor materials in strongly bound hole-electron pairs. We show in this contribution that excitons can dissociate tens of angstroms away from the interface and generate partially separated electrons and(More)
The simplest component of molecular electronics consists of a single-molecule transport junction: a molecule sandwiched between source and drain electrodes, with or without a third gate electrode. In this Concept article, we focus on how molecules control transport in metal-electrode molecular junctions, and where the molecular signatures are to be found.(More)
We develop a series of propensity rules for interpreting inelastic electron tunneling (IET) spectra of single-molecule transport junctions. IETS has no selection rules, such as those seen in optical, infrared, and Raman spectra, because IETS features arise not from the field-dipole interaction characterizing these other spectroscopies but from vibronic(More)