Learn More
A fully automated system for time-resolved reflectance spectroscopy based on tunable mode-locked laser sources and on time-correlated single-photon counting for the detection of time-resolved reflectance data was applied to the evaluation of the optical properties of biological tissues (arm, abdomen and forehead) in vivo from 610 to 1010 nm. The scattering(More)
A liquid phantom for investigating light propagation through layered diffusive media is described. The diffusive medium is an aqueous suspension of calibrated scatterers and absorbers. A thin membrane separates layers with different optical properties. Experiments showed that a material with scattering properties should be used for the membrane to avoid the(More)
A solid tissue phantom made of agar, Intralipid and black ink is described and characterized. The preparation procedure is fast and easily implemented with standard laboratory equipment. An instrumentation for time-resolved transmittance measurements was used to determine the optical properties of the phantom. The absorption and the reduced scattering(More)
In vivo absorption and reduced scattering spectra of the human calcaneous from 650 to 1000 nm were assessed using a laboratory system for time-resolved transmittance spectroscopy. Measurements were performed on the calcaneous of seven female volunteers ranging from 26 to 82 years of age. The analysis of the absorption spectra, using a linear combination of(More)
The first, to our knowledge, in-vivo broadband spectroscopic characterization of breast tissue using different interfiber distances as well as transmittance measurements is presented. Absorption and scattering properties are measured on six healthy subjects, using time-resolved diffuse spectroscopy and an inverse model based on the diffusion equation.(More)
We introduce a method for noninvasively measuring muscle contraction in vivo, based on near-infrared diffusing-wave spectroscopy (DWS). The method exploits the information about time-dependent shear motions within the contracting muscle that are contained in the temporal autocorrelation function g(1)(τ,t) of the multiply scattered light field measured as a(More)
The absorption spectrum of collagen powder is measured between 610 and 1040 nm by time-resolved transmittance spectroscopy. Absorption spectra of breast from healthy volunteers are then interpreted, adding collagen to the other absorbers previously considered (i.e., oxy- and deoxyhemoglobin, water, and lipids). A significant amount of collagen, depending on(More)
Non-destructive spectroscopy in the visible and near infrared wavelength range has been introduced for analyzing absorbing compounds in fruit and vegetables. A drawback of the method appears due to the measuring principle, where photons detected in the diffusive tissue are influenced by the sample absorption but also scattering properties leading to(More)
We present the results of a clinical study about optical properties and bulk composition of the female breast. The clinical study involved more than 150 subjects that underwent optical mammography. A multiwavelength time-resolved mammograph designed to collect time-resolved transmittance images of the breast at different wavelengths in the range 637 to 980(More)
This review is aimed at presenting the state-of-the-art of time domain (TD) functional near-infrared spectroscopy (fNIRS). We first introduce the physical principles, the basics of modeling and data analysis. Basic instrumentation components (light sources, detection techniques, and delivery and collection systems) of a TD fNIRS system are described. A(More)