Alessandro Tona

Learn More
BACKGROUND The rapid growth of the nanotechnology industry and the wide application of various nanomaterials have raised concerns over their impact on the environment and human health. Yet little is known about the mechanism of cellular uptake and cytotoxicity of nanoparticles. An array of nanomaterials has recently been introduced into cancer research(More)
In the rat, intracerebral injection of bacterial hyaluronidase resulted in the almost complete disappearance of hyaluronic acid (HA) and glial hyaluronate-binding protein (GHAP) from cerebral hemispheres, brain stem, and cerebellum (but not from optic nerves and chiasm) starting 2-3 hr after the injection. HA and GHAP reappeared throughout the brain in(More)
Spatially resolved details of the interactions of cells with a fibronectin modified surface were examined using surface plasmon resonance imaging (SPRI). SPRI is a label-free technique that is based on the spatial measurement of interfacial refractive index. SPRI is sensitive to short range interactions between cells and their substratum. The high contrast(More)
Using a glial hyaluronate-binding protein as a probe, monoclonal antibodies against versican and ABC digested chondroitin sulfate proteoglycans, and polyclonal antibodies against laminin, we localized these extracellular matrix (ECM) components in the endoneurium of the adult rat sciatic nerve. During Wallerian degeneration caused by nerve crushing, the(More)
The enzyme tissue transglutaminase 2 (TG2) appears to play an important role in several physiological processes such as wound healing, the progression of cancer and of vascular disease. Additionally, TG2 has been proposed as a means of stabilizing collagen extracellular matrix (ECM) scaffolds for tissue engineering applications. In this report, we examined(More)
Vascular smooth muscle cells (vSMC) cultured on gels of fibrillar type I collagen or denatured collagen (gelatin) comprise a model system that has been widely used for studying the role of the extracellular matrix in vascular diseases such as hypertension, restenosis and athrosclerosis. Despite the wide use of this model system, there are several(More)
BACKGROUND Cell size and shape have been implicated as potentiators of intracellular signaling events and as indicators of abnormal cell behavior. Automated microscopy and image analysis can provide quantitative information about the size and shape of cultured cells, but it requires that the edge of a cell be clearly identified. Generating adequate contrast(More)
A methodology for the preparation of porous scaffolds for tissue engineering using co-extrusion is presented. Poly(epsilon-caprolactone) is blended with poly(ethylene oxide) in a twinscrew extruder to form a two-phase material with micron-sized domains. Selective dissolution of the poly(ethylene oxide) with water results in a porous material. A range of(More)
We report a novel combinatorial methodology for characterizing the effects of polymer surface features on cell function. Libraries containing hundreds to thousands of distinct chemistries, microstructures, and roughnesses are prepared using composition spread and temperature gradient techniques. The method enables orders of magnitude increases in discovery(More)
A critical challenge in cell biology is quantifying the interactions of cells with their extracellular matrix (ECM) environment and the active remodeling by cells of their ECM. Fluorescence microscopy is a commonly employed technique for examining cell-matrix interactions. A label-free imaging method would provide an alternative that would eliminate the(More)