Learn More
Until recently, heart valve failure has been treated adopting open-heart surgical techniques and cardiopulmonary bypass. However, over the last decade, minimally invasive procedures have been developed to avoid high risks associated with conventional open-chest valve replacement techniques. Such a recent and innovative procedure represents an optimal field(More)
We initiate the study of collocation methods for NURBS-based isogeometric analysis. The idea is to connect the superior accuracy and smoothness of NURBS basis functions with the low computational cost of collocation. We develop a one-dimensional theoretical analysis, and perform numerical tests in one, two and three dimensions. The numerical results(More)
Transcatheter aortic valve implantation (TAVI) is a minimally invasive procedure introduced to treat aortic valve stenosis in elder patients. Its clinical outcomes are strictly related to patient selection, operator skills, and dedicated pre-procedural planning based on accurate medical imaging analysis. The goal of this work is to define a finite element(More)
We extend the development of collocation methods within the framework of Isogeometric Analysis (IGA) to multi-patch NURBS configurations, various boundary and patch interface conditions, and explicit dynamic analysis. The methods developed are higher-order accurate, stable with no hourglass modes, and efficient in that they require a minimum number of(More)
We compare isogeometric collocation with isogeometric Galerkin and standard C 0 finite element methods with respect to the cost of forming the matrix and residual vector, the cost of direct and iterative solvers, the accuracy versus degrees of freedom and the accuracy versus computing time. On this basis, we show that isogeometric collocation has the(More)
Keywords: Isogeometric Analysis Finite element method NURBS B-Splines Matlab Octave a b s t r a c t GeoPDEs (http://geopdes.sourceforge.net) is a suite of free software tools for applications on Isogeomet-ric Analysis (IGA). Its main focus is on providing a common framework for the implementation of the many IGA methods for the discretization of partial(More)
Traditional surgical repair of ascending aortic pseudoaneurysm is complex, technically challenging, and associated with significant mortality. Although new minimally invasive procedures are rapidly arising thanks to the innovations in catheter-based technologies, the endovascular repair of the ascending aorta is still limited because of the related(More)
Finite element analysis is nowadays a well-assessed technique to investigate the impact of stenting on vessel wall and, given the rapid progression of both medical imaging techniques and computational methods, the challenge of using the simulation of carotid artery stenting as procedure planning tool to support the clinical practice can be approached.(More)
This paper builds on a recently developed immersogeometric fluid-structure interaction (FSI) methodology for bioprosthetic heart valve (BHV) modeling and simulation. It enhances the proposed framework in the areas of geometry design and constitutive modeling. With these enhancements, BHV FSI simulations may be performed with greater levels of automation,(More)