Learn More
In this note corrections appear in increasing order of page number. 1 From page 21, line +17 until the end of §2.1 on page 22 The argument is a bit murky. It can be replaced by the following: We have observed that the cost of the search is equal to the number of tosses of a coin of bias p that are necessary until we obtain H successes. That is, we flip the(More)
Certain types of routing, scheduling, and resource-allocation problems in a distributed setting can be modeled as edge-coloring problems. We present fast and simple randomized algorithms for edge coloring a graph in the synchronous distributed point-to-point model of computation. Our algorithms compute an edge coloring of a graph G with n nodes and maximum(More)
Motivated by structural properties of the Web graph that support efficient data structures for in memory adjacency queries, we study the extent to which a large network can be compressed. Boldi and Vigna (WWW 2004), showed that Web graphs can be compressed down to three bits of storage per edge; we study the compressibility of social networks where again(More)
Sybil attacks in which an adversary forges a potentially unbounded number of identities are a danger to distributed systems and online social networks. The goal of sybil defense is to accurately identify sybil identities. This paper surveys the evolution of sybil defense protocols that leverage the structural properties of the social graph underlying a(More)
The network inference problem consists of reconstructing the edge set of a network given traces representing the chronology of infection times as epidemics spread through the network. This problem is a paradigmatic representative of prediction tasks in machine learning that require deducing a latent structure from observed patterns of activity in a network,(More)
Motivated by routing issues in ad hoc networks, we present polylogarithmic-time distributed algorithms for two problems. Given a network, we first show how to compute connected and weakly connected dominating sets whose size is at most <i>O</i>(log&#916;) times optimal, &#916; being the maximum degree of the input network. This is best-possible if NP(More)
We give, for the first time, a precise mathematical analysis of the connectivity and security properties of sensor networks that make use of the random predistribution of keys. We also show how to set the parameters---pool and key ring size---in such a way that the network is not only connected with high probability via secure links but also provably(More)