Alessandro P. S. de Moura

Learn More
A large computer program is typically divided into many hundreds or even thousands of smaller units, whose logical connections define a network in a natural way. This network reflects the internal structure of the program, and defines the "information flow" within the program. We show that (1) due to its growth in time this network displays a scale-free(More)
All chromosomes must be completely replicated prior to cell division, a requirement that demands the activation of a sufficient number of appropriately distributed DNA replication origins. Here we investigate how the activity of multiple origins on each chromosome is coordinated to ensure successful replication. We present a stochastic model for whole(More)
We show that common circulatory diseases, such as stenoses and aneurysms, generate chaotic advection of blood particles. This phenomenon has major consequences on the way the biochemical particles behave. Chaotic advection leads to a peculiar filamentary particle distribution, which in turn creates a favorable environment for particle reactions.(More)
Xenografts--as simplified animal models of cancer-differ substantially in vasculature and stromal architecture when compared to clinical tumours. This makes mathematical model-based predictions of clinical outcome challenging. Our objective is to further understand differences in tumour progression and physiology between animal models and the clinic. To(More)
  • Chandrasekaran Komalapriya, Despoina Kaloriti, Anna T. Tillmann, Zhikang Yin, Carmen Herrero-de-Dios, Mette D. Jacobsen +11 others
  • 2015
The major fungal pathogen of humans, Candida albicans, mounts robust responses to oxidative stress that are critical for its virulence. These responses counteract the reactive oxygen species (ROS) that are generated by host immune cells in an attempt to kill the invading fungus. Knowledge of the dynamical processes that instigate C. albicans oxidative(More)
  • 1