Alessandro Loppini

  • Citations Per Year
Learn More
It has been shown, in animal models, that gastrointestinal tract (GIT) motility is influenced by temperature; nevertheless, the basic mechanism governing thermal GIT smooth muscle responses has not been fully investigated. Studies based on physiologically tuned mathematical models have predicted that thermal inhomogeneity may induce an electrochemical(More)
In his research activity, Emilio Del Giudice explored the possibility to move towards a unified view of some long-range dynamics in nature, ranging from quantum field theory in physics up to biology. Such a view is adopted in this contribution by discussing a mathematical model for synchronized electrical behavior of pancreatic beta cells. The stochasticity(More)
Beta cells in pancreas represent an example of coupled biological oscillators which via communication pathways, are able to synchronize their electrical activity, giving rise to pulsatile insulin release. In this work we numerically analyze scale free self-similarity features of membrane voltage signal power density spectrum, through a stochastic dynamical(More)
The activity of pancreatic β cells can be described by biological networks of coupled nonlinear oscillators that, via electrochemical synchronization, release insulin in response to augmented glucose levels. In this work, we analyze the emergent behavior of regular and percolated β-cells clusters through a stochastic mathematical model where "functional"(More)
This work reports the results of the theoretical investigation of nonlinear dynamics and spiral wave breakup in a generalized two-variable model of cardiac action potential accounting for thermo-electric coupling and diffusion nonlinearities. As customary in excitable media, the common Q10 and Moore factors are used to describe thermo-electric feedback in a(More)
Coordinated insulin secretion is controlled by electrical coupling of pancreatic β-cells due to connexin-36 gap junctions. Gap junction coupling not only synchronizes the heterogeneous β-cell population, but can also modify the electrical behavior of the cells. These phenomena have been widely studied with mathematical models based on data from mouse(More)
OBJECTIVE It has long been known that variations in temperature can facilitate the development of cardiac arrhythmias. Here, we aim to quantify the effects of temperature on cardiac alternans properties. APPROACH in this work, we use optical mapping recordings of canine ventricular epicardial preparations to demonstrate that hypothermia can promote the(More)
  • 1