Alessandro Leone

Learn More
The paper presents an active vision system for the automatic detection of falls and the recognition of several postures for elderly homecare applications. A wall-mounted Time-Of-Flight camera provides accurate measurements of the acquired scene in all illumination conditions, allowing the reliable detection of critical events. Preliminarily, an off-line(More)
This paper presents a new approach for shadow detection of moving objects in visual surveillance environment, improving localization, segmentation, tracking and classification of detected objects. An automatic segmentation procedure based on adaptive background difference is performed in order to detect potential shadow points so that, for all moving(More)
In recent years several world-wide ambient assisted living (AAL) programs have been activated in order to improve the quality of life of older people, and to strengthen the industrial base through the use of information and communication technologies. An important issue is extending the time that older people can live in their home environment, by(More)
Moving objects tracking is an important problem in many applications such as video-surveillance. Monitoring systems can be improved using vision-based techniques able to extract and classify objects in the scene. However, problems arise due to unexpected shadows because shadow detection is critical for accurate objects detection in video stream, since(More)
In this paper an automated video surveillance system for human posture recognition using active contours and neural networks is presented. Localization of moving objects in the scene and human posture estimation are key features of the proposed architecture. The system architecture consists of five sequential modules that include the moving target detection(More)
This paper presents a simple and reliable approach to the estimation of body postures in visual surveillance of outdoor environments. The image sequences coming from a still camera are processed by two subsystems to detect motion and recognize objects (humans). Regions corresponding to people are fed to the posture estimation module. The proposed algorithm(More)
A non-invasive technique for posture classification suitable to be used in several in-home scenarios is proposed and preliminary validation results are presented. 3D point cloud sequences were acquired using a single time-of-flight sensor working in a privacy preserving modality and they were processed with a low power embedded PC. In order to satisfy(More)