Learn More
— In this paper we present an efficient approach for the fault detection of discrete event systems using Petri nets. We assume that some of the transitions of the net are unobservable, including all those transitions that model faulty behaviors. We prove that the set of all possible firing sequences corresponding to a given observation can be described as(More)
This paper surveys recent research on the application of Petri net models to the analysis and synthesis of controllers for discrete event systems. Petri nets have been used extensively in applications such as automated manufacturing, and there exists a large body of tools for qualitative and quantitative analysis of Petri nets. The goal of Petri net(More)
In this paper we discuss the problem of estimating the marking of a Place/Transition net based on event observation. We assume that the net structure is known while the initial marking is totally or partially unknown. We give algorithms to compute a marking estimate that is a lower bound of the actual marking. The special structure of Petri nets allows us(More)
—This paper discusses the problem of controlling a timed Petri net whose marking cannot be measured but is estimated using an observer. The control objective is that of enforcing a set of generalized mutual exclusion constraints (GMEC) and all transitions are assumed to be controllable. We show that the use of marking estimates may significantly reduce the(More)
In this paper we deal with the problem of estimating the marking of a labeled Petri net with nondeterministic transitions. In particular, we consider the case in which nondeterminism is due to the presence of transitions that share the same label and that can be simultaneously enabled. Under the assumption that: the structure of the net is known, the(More)
This paper addresses the optimal control problem of timed continuous Petri nets under infinite servers semantics. In particular, our goal is to find a control input optimizing a certain cost function that permits the evolution from an initial marking (state) to a desired steady-state. The solution we propose is based on a particular discrete-time(More)
— To improve the efficiency of cargo handling with cranes it is necessary to control the crane trolley position so that the swing of the hanging load is minimized. In this paper we consider a linear parameter-varying model of the crane, where the time-varying parameter is the length of the suspending rope. We consider the set of models given by frozen(More)