Learn More
In this paper, we study general protocell models aiming to understand the synchronization phenomenon of genetic material and container productions, a necessary condition to ensure sustainable growth in protocells and eventually leading to Darwinian evolution when applied to a population of protocells. Synchronization has been proved to be an emergent(More)
Autocatalytic cycles are rather common in biological systems and they might have played a major role in the transition from non-living to living systems. Several theoretical models have been proposed to address the experimentalists during the investigation of this issue and most of them describe a phase transition depending upon the level of heterogeneity(More)
Autocatalytic cycles are rather widespread in nature and in several theoretical models of catalytic reaction networks their emergence is hypothesized to be inevitable when the network is or becomes sufficiently complex. Nevertheless, the emergence of autocatalytic cycles has been never observed in wet laboratory experiments. Here, we present a novel model(More)
In most theories concerning the origin of life autocatalytic sets are supposed to play an important role in the phase transition between non-living and living matter. Although several theoretical models describe this phase transition, it is very hard to recreate the experimental conditions in wet lab. We here introduce a stochastic model of catalytic(More)
A general numerical methodology for parametric sensitivity analysis is proposed, which allows to determine the parameters exerting the greatest influence on the output of a stochastic computational model, especially when the knowledge about the actual value of a parameter is insufficient. An application of the procedure is performed on a model of protocell,(More)
Artificial life is largely concerned with systems that exhibit different emergent phenomena; yet, the identification of emergent structures is frequently a difficult challenge. In this paper we introduced a system to identify candidate emergent mesolevel dynamical structures in dynamical networks. This method is based on an extension of a measure introduced(More)
Protocells are supposed to have played a key role in the self-organizing processes leading to the emergence of life. Existing models either (i) describe protocell architecture and dynamics, given the existence of sets of collectively self-replicating molecules for granted, or (ii) describe the emergence of the aforementioned sets from an ensemble of random(More)
We propose an improvement of the Gillespie algorithm allowing us to study the time evolution of an ensemble of chemical reactions occurring in a varying volume, whose growth is directly related to the amount of some specific molecules, belonging to the reactions set. This allows us to study the stochastic evolution of a protocell, whose volume increases(More)