Learn More
This paper considers the problem of performing decentralised coordination of low-power embedded devices (as is required within many environmental sensing and surveillance applications). Specifically , we address the generic problem of maximising social welfare within a group of interacting agents. We propose a novel representation of the problem, as a(More)
Extreme teams, large-scale agent teams operating in dynamic environments, are on the horizon. Such environments are problematic for current task allocation algorithms due to the lack of locality in agent interactions. We propose a novel distributed task allocation algorithm for extreme teams, called LA-DCOP, that incorporates three key ideas. First,(More)
In this paper we propose a novel approach to decentralised coordination, that is able to efficiently compute solutions with a guaranteed approximation ratio. Our approach is based on a factor graph representation of the constraint network. It builds a tree structure by eliminating dependencies between the functions and variables within the factor graph that(More)
The coordination of emergency responders and robots to undertake a number of tasks in disaster scenarios is a grand challenge for multi-agent systems. Central to this endeavour is the problem of forming the best teams (coalitions) of responders to perform the various tasks in the area where the disaster has struck. Moreover, these teams may have to form,(More)
Emergency responders are faced with a number of significant challenges when managing major disasters. First, the number of rescue tasks posed is usually larger than the number of responders (or agents) and the resources available to them. Second, each task is likely to require a different level of effort in order to be completed by its deadline. Third, new(More)
Emergency responders are faced with a number of significant challenges when managing major disasters. First, the number of rescue tasks posed is usually larger than the number of responders (or agents) and the resources available to them. Second, each task is likely to require a different level of effort in order to be completed by its deadline. Third, new(More)
" Exploration and search " is a typical task for autonomous robots performing in rescue missions, specifically addressing the problem of exploring the environment and at the same time searching for interesting features within the environment. In this paper, we model this problem as a multi-objective exploration and search problem and present a prototype(More)
Matching demand and supply is recognized as a crucial issue for smart grids, and ICT-based solutions are essential to deliver the infrastructure , algorithms and mechanisms for demand-supply balancing. To date, most work in this area focus on providing users with real time feedback on energy prices and consumption, or on load scheduling of home appliances(More)
In this paper we present an asynchronous distributed mechanism for allocating tasks in a team of robots. Tasks to be allocated are dynamically perceived from the environment and can be tied by execution constraints. Conflicts among team mates arise when an uncontrolled number of robots execute the same task, resulting in waste of effort and spatial(More)
In this paper, we introduce an on-line, decentralised coordination algorithm for monitoring and predicting the state of spatial phenomena by a team of mobile sensors. These sensors have their application domain in disaster response, where strict time constraints prohibit path planning in advance. The algorithm enables sensors to coordinate their movements(More)