Learn More
UNLABELLED Genomic analyses are yielding a host of new information on the multiple genetic abnormalities associated with specific types of cancer. A comprehensive description of cancer-associated genetic abnormalities can improve our ability to classify tumors into clinically relevant subgroups and, on occasion, identify mutant genes that drive the cancer(More)
We describe the application of a novel screening approach that combines automated yeast genetics, synthetic genetic array (SGA) analysis, and a high-content screening (HCS) system to examine mitotic spindle morphogenesis. We measured numerous spindle and cellular morphological parameters in thousands of single mutants and corresponding sensitized double(More)
We present an integrated approach that predicts and validates novel anti-cancer drug targets. We first built a classifier that integrates a variety of genomic and systematic datasets to prioritize drug targets specific for breast, pancreatic and ovarian cancer. We then devised strategies to inhibit these anti-cancer drug targets and selected a set of(More)
MicroRNAs (miRNAs) have rapidly emerged as biologically important mediators of posttranscriptional and epigenetic regulation in both plants and animals. miRNAs function through a variety of mechanisms including mRNA degradation and translational repression; additionally, miRNAs may guide gene expression by serving as transcription factors. miRNAs are highly(More)
Golgi beta1,6N-acetylglucosaminyltransferase V (Mgat5) produces beta1,6GlcNAc-branched complex N-glycans on cell surface glycoproteins that bind to galectins and promote surface residency of glycoproteins, including cytokine receptors. Carcinoma cells from polyomavirus middle T (PyMT) transgenic mice on a Mgat5-/- background have reduced surface levels of(More)
Off-patent drugs with previously unrecognized anticancer activity could be rapidly repurposed for this new indication. To identify such compounds, we conducted 2 independent cell-based chemical screens and identified the antimicrobial ciclopirox olamine (CPX) in both screens. CPX decreased cell growth and viability of malignant leukemia, myeloma, and solid(More)
Genome integrity is jeopardized each time DNA replication forks stall or collapse. Here we report the identification of a complex composed of MMS22L (C6ORF167) and TONSL (NFKBIL2) that participates in the recovery from replication stress. MMS22L and TONSL are homologous to yeast Mms22 and plant Tonsoku/Brushy1, respectively. MMS22L-TONSL accumulates at(More)
Normal epithelial cells undergo apoptosis upon detachment from the extracellular matrix, a process termed "anoikis." However, malignant epithelial cells with metastatic potential resist anoikis and can survive in an anchorage-independent fashion. Molecules that sensitize resistant cells to anoikis will be useful chemical probes to understand this pathway.(More)
Malignant epithelial cells with metastatic potential resist apoptosis that normally occurs upon loss of anchorage from the extracellular matrix, a process termed "anoikis." Resistance to anoikis enables malignant cells to survive in an anchorage-independent manner, which leads to the formation of distant metastases. To understand the regulation of anoikis,(More)
Improved efforts are necessary to define the functional product of cancer mutations currently being revealed through large-scale sequencing efforts. Using genome-scale pooled shRNA screening technology, we mapped negative genetic interactions across a set of isogenic cancer cell lines and confirmed hundreds of these interactions in orthogonal co-culture(More)