Learn More
We describe the application of a novel screening approach that combines automated yeast genetics, synthetic genetic array (SGA) analysis, and a high-content screening (HCS) system to examine mitotic spindle morphogenesis. We measured numerous spindle and cellular morphological parameters in thousands of single mutants and corresponding sensitized double(More)
We present an integrated approach that predicts and validates novel anti-cancer drug targets. We first built a classifier that integrates a variety of genomic and systematic datasets to prioritize drug targets specific for breast, pancreatic and ovarian cancer. We then devised strategies to inhibit these anti-cancer drug targets and selected a set of(More)
MicroRNAs (miRNAs) have rapidly emerged as biologically important mediators of posttranscriptional and epigenetic regulation in both plants and animals. miRNAs function through a variety of mechanisms including mRNA degradation and translational repression; additionally, miRNAs may guide gene expression by serving as transcription factors. miRNAs are highly(More)
Improved efforts are necessary to define the functional product of cancer mutations currently being revealed through large-scale sequencing efforts. Using genome-scale pooled shRNA screening technology, we mapped negative genetic interactions across a set of isogenic cancer cell lines and confirmed hundreds of these interactions in orthogonal co-culture(More)
Neuroblastoma (NB) is the most deadly extra-cranial solid tumour in children necessitating an urgent need for effective and less toxic treatments. One reason for the lack of efficacious treatments may be the inability of existing drugs to target the tumour-initiating or cancer stem cell population responsible for sustaining tumour growth, metastases and(More)
The tumor suppressors Pten and p53 are frequently lost in breast cancer, yet the consequences of their combined inactivation are poorly understood. Here, we show that mammary-specific deletion of Pten via WAP-Cre, which targets alveolar progenitors, induced tumors with shortened latency compared to those induced by MMTV-Cre, which targets basal/luminal(More)
D-cyclins are regulators of cell division that act in a complex with cyclin-dependent kinases to commit cells to a program of DNA replication. D-cyclins are overexpressed in many tumors, including multiple myeloma and leukemia, and contribute to disease progression and chemoresistance. To better understand the role and impact of D-cyclins in hematologic(More)
The oncogene c-maf is frequently overexpressed in multiple myeloma cell lines and patient samples and contributes to increased cellular proliferation in part by inducing cyclin D2 expression. To identify regulators of c-maf, we developed a chemical screen in NIH3T3 cells stably overexpressing c-maf and the cyclin D2 promoter driving luciferase. From a(More)
Large-scale proteomic approaches have been used to study signaling pathways. However, identification of biologically relevant hits from a single screen remains challenging due to limitations inherent in each individual approach. To overcome these limitations, we implemented an integrated, multi-dimensional approach and used it to identify Wnt pathway(More)
Malignant epithelial cells with metastatic potential resist apoptosis that normally occurs upon loss of anchorage from the extracellular matrix, a process termed ''anoikis.'' Resistance to anoikis enables malignant cells to survive in an anchorage-independent manner, which leads to the formation of distant metastases. To understand the regulation of(More)