Alessandro Bulfone

Learn More
The developing neocortex contains two types of progenitor cells for glutamatergic, pyramidal-projection neurons. The first type, radial glia, produce neurons and glia, divide at the ventricular surface, and express Pax6, a homeodomain transcription factor. The second type, intermediate progenitor cells, are derived from radial glia, produce only neurons,(More)
Pallial and subpallial morphological subdivisions of the developing chicken telencephalon were examined by means of gene markers, compared with their expression pattern in the mouse. Nested expression domains of the genes Dlx-2 and Nkx-2.1, plus Pax-6-expressing migrated cells, are characteristic for the mouse subpallium. The genes Pax-6, Tbr-1, and Emx-1(More)
The striatum has a central role in many neurobiological processes, yet little is known about the molecular control of its development. Inroads to this subject have been made, due to the discovery of transcription factors, such as the Dlx genes, whose expression patterns suggest that they have a role in striatal development. We report that mice lacking both(More)
During corticogenesis, early-born neurons of the preplate and layer 6 are important for guiding subsequent neuronal migrations and axonal projections. Tbr1 is a putative transcription factor that is highly expressed in glutamatergic early-born cortical neurons. In Tbr1-deficient mice, these early-born neurons had molecular and functional defects.(More)
The expression patterns of four genes that are potential regulators of development were examined in the CNS of the embryonic day 12.5 mouse embryo. Three of the genes, Dlx-1, Dlx-2 (Tes-1), and Gbx-2, encode homeodomain-containing proteins, and one gene, Wnt-3, encodes a putative secreted differentiation factor. These genes are expressed in spatially(More)
The Dlx homeobox gene family is expressed in a complex pattern within the embryonic craniofacial ectoderm and ectomesenchyme. A previous study established that Dlx-2 is essential for development of proximal regions of the murine first and second branchial arches. Here we describe the craniofacial phenotype of mice with mutations in Dlx-1 and Dlx-1 and -2.(More)
Olfactory sensory neurons expressing a given odorant receptor project to two topographically fixed glomeruli in the olfactory bulb. We have examined the contribution of different cell types in the olfactory bulb to the establishment of this topographic map. Mice with a homozygous deficiency in Tbr-1 lack most projection neurons, whereas mice with a(More)
Genetic analysis of the development and evolution of the vertebrate head is at a primitive stage. Many homeo box genes, including the Distal-less family, are potential regulators of head development. To determine the function of Dlx-2, we generated a null mutation in mice using gene targeting. In homozygous mutants, differentiation within the forebrain is(More)
The mechanisms that regulate regional specification and evolution of the cerebral cortex are obscure. To this end, we have identified and characterized a novel murine and human gene encoding a putative transcription factor related to the Brachyury (T) gene that is expressed only in postmitotic cells. T-brain-1 (Tbr-1) mRNA is largely restricted to the(More)
Recently, the Dlx family of homeobox genes have been identified as candidates for regulating patterning and differentiation of the forebrain. We have made a polyclonal antiserum to the protein product of the Dlx-2 gene. Using this antiserum, we have characterized the spatial and temporal pattern of DLX-2 protein expression during murine development and in(More)