Learn More
We determine the initial condition on the laminar-turbulent boundary closest to the laminar state using nonlinear optimization for plane Couette flow. Resorting to the general evolution criterion of nonequilibrium systems we optimize the route to the statistically steady turbulent state, i.e., the state characterized by the largest entropy production. This(More)
Recent studies have suggested that in some cases transition can be triggered by some purely nonlinear mechanisms. Here we aim at verifying such an hypothesis, looking for a localized perturbation able to lead a boundary-layer flow to a chaotic state, following a nonlinear route. Nonlinear optimal localized perturbations have been computed by means of an(More)
The transition of the flow in a duct of square cross-section is studied. Like in the similar case of the pipe flow, the motion is linearly stable for all Reynolds numbers; this flow is thus a good candidate to investigate the 'bypass' path to turbulence. Initially the so-called 'linear optimal perturbation problem' is formulated and solved, yielding optimal(More)
This paper is concerned with the transition of the laminar flow in a duct of square cross section. As in the similar case of pipe flow, the motion is linearly stable for all Reynolds numbers, rendering this flow a suitable candidate for a study of the 'bypass' path to turbulence. It has already been shown that the classical linear optimal perturbation(More)
SUMMARY. The aim of the article is the kinematic and geometric design of a flapping wing UAV, in order to develop an Unmanned Aerial Vehicle, capable of executing reconnaissance and video-surveillance missions. To define the characteristic dimensions of the vehicle a biological study was initially carried out, analyzing, for example, the weight-wingspan(More)
Control theory is used to determine optimal disturbances in pipe flow and the forcing, in the form of blowing and suction at the wall, capable of attenuating them. An approach is adopted, based on a parabolic approximation of the linear Navier–Stokes equations, which is appropriate when dealing with asymptotically elongated (in the streamwise direction)(More)
The three-dimensional global optimal dynamics of a flat-plate boundary layer is studied by means of an adjoint-based optimization in a spatial domain of long – but finite – streamwise dimension. The localized optimal initial perturbation is characterized by a pair of streamwise-modulated counter-rotating vortices, tilted upstream, yielding at the optimal(More)
  • 1