Alessandro Biancardi

Learn More
We have studied the emission features of the fluorescent polarity-sensitive probes known as Prodan and Laurdan in a liquid-crystalline DPPC bilayer. To this purpose, we have combined high-level quantum mechanical electronic structure calculations with a molecular field theory for the positional-orientational-conformational distribution of the probes, in(More)
Solvatochromism is commonly used in many fields of chemical and biological research to study bulk and local polarity in macrosystems (membranes, etc.), or even the conformation and binding of proteins. Despite its wide use, solvatochromism still remains a largely unknown phenomenon due to the extremely complex coupling of many different interactions and(More)
The fluorescent probe 4',6-diamidino-2-phenylindole (DAPI) is a dye known to interact with polynucleotides in a non-univocal manner, both intercalation and minor groove binding modes being possible, and to specifically change its photophysical properties according to the different environments. To investigate this behavior, quantum-mechanical calculations(More)
Photosynthesis is triggered by the absorption of light by light-harvesting (LH) pigment-protein complexes followed by excitation energy transfer to the reaction center(s). A promising strategy to achieve control on and to improve light harvesting is to complement the LH complexes with plasmonic particles. Here a recently developed QM/MM/continuum approach(More)
A Density Functional Theory (DFT) study of the absorbance and fluorescence emission characteristics of the cyanine thiazole orange (TO) in solution and when intercalated in DNA was carried out in combination with spectrophotometric and spectrofluorometric experiments under different conditions (temperature, concentration, solvent viscosity). T-jump(More)
A fast, simple and very selective liquid chromatography-mass spectrometry (LC-MS) method for the detection of isopropylthioxanthone (ITX) in dairy products has been developed and validated. After addition of an ITX-d(3) as internal standard and a simple extraction from the sample with acetonitrile, the extract was centrifuged and directly injected into the(More)
We introduce a new method to compute the optical absorption spectra of complex molecular systems in solution, based on the Liouville approach to time-dependent density-functional perturbation theory and the revised self-consistent continuum solvation model. The former allows one to obtain the absorption spectrum over a whole wide frequency range, using a(More)
Hybrid quantum mechanical methods can assist in the interpretation and prediction of the electronic spectra of large molecular structures. In this work, we study the performance of the ONIOM (Our own N-layered Integrated molecular Orbital molecular Mechanics) hybrid method for the calculation of transition energies and oscillator strengths by embedding the(More)
The photophysical and DNA-binding properties of the cationic zinc(II) complex of 5-triethylammonium methyl salicylidene ortho-phenylenediiminato (ZnL(2+)) were investigated by a combination of experimental and theoretical methods. DFT calculations were performed on both the ground and the first excited states of ZnL(2+) and on its possible mono- and(More)
Thioflavin-T (TFT) is a fluorescent marker widely employed in biomedical research but the mechanism of its binding to polynucleotides has been poorly understood. This paper presents a study of the mechanisms of TFT self-aggregation and binding to DNA. Relaxation kinetics of TFT solutions show that the cyanine undergoes dimerization followed by dimer(More)