Alessandra Ricca

Learn More
Murine neural stem cells (mNSCs), either naive or genetically modified to express supranormal levels of β-galactocerebrosidase (GALC), were transplanted into the brain of Twitcher mice, a murine model of globoid cell leukodystrophy, a severe sphingolipidosis. Cells engrafted long-term into the host cytoarchitecture, producing functional GALC. Levels of(More)
Hematoma of the rectus abdominis muscle sheath is a little known and rarely diagnosed condition, in spite of its definite clinical setting and treatment. It is very important to the surgeon, as it may be mistaken frequently for acute inflammatory abdominal conditions and should be considered in the differential diagnosis of intra-abdominal tumors. The(More)
Globoid cell leukodystrophy (GLD) or Krabbe disease is a lysosomal storage disorder caused by genetic defects in the expression and activity of galactosylceramidase, a key enzyme in the catabolism of myelin-enriched sphingolipids. While there are several histologic, biochemical, and functional studies on GLD, correlations between morphologic and biochemical(More)
We report a novel role for the lysosomal galactosylceramidase (GALC), which is defective in globoid cell leukodystrophy (GLD), in maintaining a functional post-natal subventricular zone (SVZ) neurogenic niche. We show that proliferation/self-renewal of neural stem cells (NSCs) and survival of their neuronal and oligodendroglial progeny are impaired in(More)
The activities of plasma membrane associated sialidase Neu3, total β-glucosidase, CBE-sensitive β-glucosidase, non-lysosomal β-glucosyl ceramidase GBA2, β-galactosidase, β-hexosaminidase and sphingomyelinase were determined at three different stages of differentiation of murine neural stem cell cultures, corresponding to precursors, commited progenitors,(More)
Globoid cell leukodystrophy (GLD) is a lysosomal storage disease caused by deficient activity of β-galactocerebrosidase (GALC). The infantile forms manifest with rapid and progressive central and peripheral demyelination, which represent a major hurdle for any treatment approach. We demonstrate here that neonatal lentiviral vector-mediated intracerebral(More)
c-myb antisense oligonucleotides (AS ODNs) were reversibly immobilized to a novel polymeric core shell nanosphere and their cellular uptake and inhibitory effect on HL60 leukemia cell proliferation studied. The nanosphere surface was so designed as to directly bind ODNs via ionic interactions and reversibly release them inside the cells. Compared with the(More)
The cellular uptake and the inhibitory effect of c-myb unmodified antisense oligonucleotides reversibly bound to new polymeric nanoparticles in HL-60 cellular system have been found to increase by 50 folds if compared with the free ODN. An initial single dose (320 nM) of the nanoparticle bound unmodified antimyb ODN has been able to specifically inhibit(More)