Alessandra Pescatore

Learn More
The regulatory subunit NEMO is involved in the mechanism of activation of IkappaB kinase (IKK), the kinase complex that controls the NF-kappaB signaling pathway. During this process, NEMO is modified post-translationally through K63-linked polyubiquitination. We report the molecular characterization of a new missense mutation of NEMO (A323P) which causes a(More)
IKBKG/NEMO gene mutations cause an X-linked, dominant neuroectodermal disorder named Incontinentia Pigmenti (IP). Located at Xq28, IKBKG/NEMO has a unique genomic organization, as it is part of a segmental duplication or low copy repeat (LCR1-LCR2, >99% identical) containing the gene and its pseudogene copy (IKBKGP). In the opposite direction and outside(More)
NF-kappaB Essential MOdulator (NEMO) has been shown to play a critical role in NF-kappaB activation, as the regulatory subunit of IkappaB kinase. Upon cell stimulation, NEMO can be modified through phosphorylation, sumoylation or ubiquitination. In the latter case, not much is known regarding the exact function of this posttranslational modification. One of(More)
BACKGROUND The oocyte-to-embryo transition (OET) requires a co-ordinated transcriptional programme acting through evolutionarily conserved events, and transcription factors (TFs) are known to control these processes. Here, we focus on nuclear factor (NF)-κB, a TF involved in several cellular processes, studying NFκB-inhibitor (NFKBIA) mRNA and its protein(More)
Mendelian primary immunodeficiency diseases (MPIDs) are rare disorders affecting distinct constituents of the innate and adaptive immune system. Although they are genetically heterogeneous, a substantial group of MPIDs is due to mutations in genes affecting the nuclear factor-κB (NF-κB) transcription pathway, essential for cell proliferation and cell(More)
We report here on the building-up of a database of information related to 386 cases of Incontinentia Pigmenti collected in a thirteen-year activity (2000-2013) at our centre of expertise. The database has been constructed on the basis of a continuous collection of patients (27.6/year), the majority diagnosed as sporadic cases (75.6%). This activity has(More)
Incontinentia Pigmenti (IP) is a rare X-linked disease characterized by early male lethality and multiple abnormalities in heterozygous females. IP is caused by NF-κB essential modulator (NEMO) mutations. The current mechanistic model suggests that NEMO functions as a crucial component mediating the recruitment of the IκB-kinase (IKK) complex to tumor(More)
  • 1