Learn More
Living organisms are continuously exposed to environmental pollutants. Because of its critical location, the skin is a major interface between the body and the environment and provides a biological barrier against an array of chemical and physical environmental pollutants. The skin can be defined as our first defense against the environment because of its(More)
Electronic cigarettes (E-cigarettes) are devices that can vaporize a nicotine solution combined with liquid flavors instead of burning tobacco leaves. Since their emergence in 2004, E-cigarettes have become widely available, and their use has increased exponentially worldwide. E-cigarettes are aggressively advertised as a smoking cessation aid; as(More)
Rett syndrome (RTT) is mainly caused by mutations in the X-linked methyl-CpG binding protein (MeCP2) gene. By binding to methylated promoters on CpG islands, MeCP2 protein is able to modulate several genes and important cellular pathways. Therefore, mutations in MeCP2 can seriously affect the cellular phenotype. Today, the pathways that MeCP2 mutations are(More)
Mechanical loading and hydrostatic pressure (HP) regulate chondrocytes' metabolism; however, how mechanical stimulation acts remain unclear. MicroRNAs (miRNAs) play an important role in cartilage homeostasis, mechanotransduction, and in the pathogenesis of osteoarthritis (OA). This study investigated the effects of a cyclic HP (1-5 MPa), in both normal and(More)
OBJECTIVE Rett syndrome (RTT) is a neurological disorder and a leading cause of mental retardation in females. It is caused by mutations in methyl-CpG-binding protein 2 (MeCP2) gene and more rarely in cyclin-dependent kinase-like 5 (CDKL5) and forkhead box protein G1 (FOXG1) genes. Increased oxidative stress (OS) has been documented in MeCP2-RTT patients.(More)
BACKGROUND Rett syndrome (RTT) is a pervasive development disorder, mainly caused by mutations in the methyl-CpG binding protein 2 (MeCP2) gene. No reliable biochemical markers of the disease are available. Here we assess F₄-neuroprostanes (F₄-NeuroPs), lipid peroxidation products of the docosahexaenoic acid, as a novel disease marker in RTT and correlate(More)
Oxidative damage has been reported in Rett syndrome (RTT), a pervasive developmental disorder caused in up to 95% of cases by mutations in the X-linked methyl-CpG binding protein 2 gene. Herein, we have synthesized F(2)-dihomo-isoprostanes (F(2)-dihomo-IsoPs), peroxidation products from adrenic acid (22:4 n-6), a known component of myelin, and tested the(More)
Rett syndrome (RTT) is a pervasive neurodevelopmental disorder mainly linked to mutations in the gene encoding the methyl-CpG-binding protein 2 (MeCP2). Respiratory dysfunction, historically credited to brainstem immaturity, represents a major challenge in RTT. Our aim was to characterize the relationships between pulmonary gas exchange abnormality (GEA),(More)
Rett syndrome (RTT) is a rare neurodevelopmental disorder affecting almost exclusively females, caused in the overwhelming majority of the cases by loss-of-function mutations in the gene encoding methyl-CpG binding protein 2 (MECP2). High circulating levels of oxidative stress (OS) markers in patients suggest the involvement of OS in the RTT pathogenesis.(More)
Bacterial lipopolysaccharide (LPS) induces interferon (IFN) secretion and an antiviral state in murine peritoneal macrophages (PM). These cells secrete predominantly IFN-beta, as shown by neutralization assays with monoclonal antibodies. Secretion of IFN-beta is also induced in PM by IFN-gamma. LPS and IFN-gamma synergistically stimulated PM to produce IFN(More)