Alessandra Benuzzi-Mounaix

Learn More
Laser-driven shock compression of samples precompressed to 1 GPa produces high-pressure-temperature conditions inducing two significant changes in the optical properties of water: the onset of opacity followed by enhanced reflectivity in the initially transparent water. The onset of reflectivity at infrared wavelengths can be interpreted as a(More)
We present a supercritical radiative shock experiment performed with the LULI nanosecond laser facility. Using targets filled with xenon gas at low pressure, the propagation of a strong shock with a radiative precursor is evidenced. The main measured shock quantities (electronic density and propagation velocity) are shown to be in good agreement with theory(More)
We present equation of state points for iron, in the pressure range 10-45 Mbar, the first obtained with laser-driven shock waves. The experiment has been performed with the high energy laser Phebus, optically smoothed with Kinoform phase plates. Our results double the set of existing experimental data at very high pressures showing good agreement with the(More)
In this paper we report on the radiography of a shock-compressed target using laser produced proton beams. A low-density carbon foam target was shock compressed by long pulse high-energy laser beams. The shock front was transversally probed with a proton beam produced in the interaction of a high intensity laser beam with a gold foil. We show that from(More)
Diamond is the only known high-pressure structure of carbon. In spite of its fundamental and planetary importance, the stability domain of this strong covalent material is largely unknown. After decades of experimental efforts, evidence was obtained that the diamond-liquid melting line has a positive slope above the graphite-diamond-liquid triple point. At(More)
We show the simultaneous applicability of the frequency domain interferometry and the chirped pulse reflectometry techniques to measure shock parameters. The experiment has been realized with the laser at the Laboratoire pour l'Utilisation des Lasers Intenses (LULI) with a 550-ps pulse duration and an intensity on target approximately 5 x 10(13) W/cm(2) to(More)
We have performed short-pulse x-ray scattering measurements on laser-driven shock-compressed plastic samples in the warm dense matter regime, providing instantaneous snapshots of the system evolution. Time-resolved and angularly resolved scattered spectra sensitive to the correlation effects in the plasma show the appearance of short-range order within a(More)
The evolution of the K-edge x-ray absorption near-edge spectroscopy (XANES) spectrum is investigated for an aluminum plasma expanding from the solid density down to 0.5  g/cm{3}, with temperatures lying from 5 down to 2 eV. The dense plasma is generated by nanosecond laser-induced shock compression. These conditions correspond to the density-temperature(More)
We investigate the evolution of the electronic structure of fused silica in a dense plasma regime using time-resolved x-ray absorption spectroscopy. We use a nanosecond (ns) laser beam to generate a strong uniform shock wave in the sample and a picosecond (ps) pulse to produce a broadband x-ray source near the Si K edge. By varying the delay between the two(More)
The electronic structure evolution of highly compressed aluminum has been investigated using time resolved K edge x-ray absorption spectroscopy. A long laser pulse (500 ps, I(L)≈8×10(13) W/cm(2)) was used to create a uniform shock. A second ps pulse (I(L)≈10(17)  W/cm(2)) generated an ultrashort broadband x-ray source near the Al K edge. The main target was(More)