Ales Honzátko

Learn More
The LmbB1 protein, participating in the biosynthesis of lincomycin, was heterologously expressed in Escherichia coli, purified in its active form, and characterized as a dimer of identical subunits. Methods for purification and analysis of the LmbB1 reaction product were developed. Molecular mass and fragmentation pattern of the product revealed by(More)
trans-4-Hydroxy-2-nonenal (HNE) is a cytotoxic alpha,beta-unsaturated aldehyde implicated in the pathology of multiple diseases involving oxidative damage. Oxidation of HNE by aldehyde dehydrogenases (ALDHs) to trans-4-hydroxy-2-nonenoic acid (HNEA) is a major route of metabolism in many organisms. HNE exists as two enantiomers, (R)-HNE and (S)-HNE, and in(More)
Trans-4-hydroxy-2-nonenal (HNE) is a product of lipid peroxidation with many cellular effects. HNE possesses a stereogenic center at the C4 carbon that influences the metabolism and alkylation targets of HNE. We tested the hypothesis that rat brain mitochondria metabolize HNE in an enantioselective manner after exposure to racemic HNE. The study of HNE(More)
α,β-unsaturated aldehydes are toxic products of lipid peroxidation. Detection and characterization of these aldehydes is important in many human disease states as well as in the food industry. Our study shows that electron ionization-mass spectrometry (EI-MS) and positive-ion chemical ionization-mass spectrometry (PICI-MS), but not electron capture negative(More)
Lipid peroxidation is a causal factor in multiple diseases including Alzheimer's disease, atherosclerosis, and alcoholic liver disease. One of the most studied products of lipid peroxidation, trans-4-hydroxy-2-nonenal (HNE), has multiple cell signaling and cytotoxic effects. In this work, we developed an LC-MS/MS method for the quantitation of HNE(More)
trans-4-Hydroxy-2-nonenoic acid (HNEA) is a marker of lipid peroxidation resulting from the metabolism of trans-4-hydroxy-2-nonenal (HNE). Direct and indirect RP-HPLC methods for the separation of HNEA enantiomers were developed and compared. The indirect method involved pre-column derivatization with a chiral amino agent,(More)
The formation and toxicity of trans-4-hydroxy-2-nonenal in the central nervous system is well documented. However, the metabolism of HNE in the central nervous system (CNS) is not clear. HNE metabolism in the CNS appears to be different from that in other tissues and organs and may be dependent on the cell type and subcellular environment. Our data show(More)
  • 1