Learn More
Phytochelatins, heavy-metal-binding polypeptides, are synthesized by phytochelatin synthase (PCS) (EC 2.3.2.15). Previous studies on plants overexpressing PCS genes yielded contrasting phenotypes, ranging from enhanced cadmium tolerance and accumulation to cadmium hypersensitivity. This paper compares the effects of overexpression of AtPCS1 and CePCS in(More)
Phytochelatins (PCs) are small, cysteine-rich peptides, known to play a major role in detoxification of both cadmium and arsenic. The aim of this study was to determine whether overexpression of either of two PC synthase (PCS) genes, AtPCS1 and CePCS in Nicotiana tabacum (previously shown to cause decrease and increase, respectively, of cadmium tolerance of(More)
Thin polished sections of copper sulphide ore were placed as an energy source in stationary cultures of wild strains and Thiobacillus neapolitanus at pH 7.5. Scanning electron microscopy revealed characteristic leaching patterns that depended on the type of leaching process and time of bioleaching. In some cases, a biological film on the ore surface was(More)
The Upper Permian polymetallic, organic-rich Kupferschiefer black shale in the Fore-Sudetic Monocline is acknowledged to be one of the largest Cu-Ag deposits in the world. Here we report the results of the first study of bioweathering of this sedimentary rock by indigenous heterotrophic bacteria. Experiments were performed under laboratory conditions,(More)
Arabidopsis MRPs/ABCCs have been shown to remove various organic and inorganic substrates from the cytosol to other subcellular compartments. Here we first demonstrate that heterologous expression of AtMRP7 in tobacco (Nicotiana tabacum var. Xanthi) modifies cadmium accumulation, distribution and tolerance. Arabidopsis MRP7 was localized both in the(More)
This study describes the yeast Rhodotorula mucilaginosa strain LM9 isolated from copper-bearing, organic-rich Kupferschiefer black shale and its role in copper biotransformation. Strain LM9 exhibited great ability to simultaneously mobilize and immobilize copper from this sedimentary rock. In addition, it showed considerable resistance to copper and high(More)
The main aim of the study was to evaluate the strategies for coping with arsenic toxicity developed by the mine species (Calamagrostis arundinacea, Fragaria vesca, Stachys sylvatica, and Epilobium parviflorum), and to compare results obtained from plants exposed to arsenic present in contaminated soil (2000-3500 mg/kg dw) and in hydroponic solution (2(More)
Culture experiments employing Fe-deficient medium showed that a consortium of indigenous microorganisms isolated from Kupferschiefer black shale produced a mixture of extracellular compounds containing siderophores which could form complexes with a wide range of elements and were able to mediate element mobilization from polymetallic black shale. The(More)
The content of fatty acids extracted from the membranes of E. coli MC 1061 harboring the wild-type dnaKdnaJ alleles and its delta dnaJ and delta dnaKdnaJ derivatives was compared. It was demonstrated that dodecanoic acid was missing in NPLs fraction extracted from both mutants grown at 42 degrees C. Phospholipids extracted from mutant strains were deprived(More)
Different bacterial cell fractions of Thiobacillus neapolitanus were examined in order to localize the active sites for thiosulphate and sulphite oxidation. Difference spectra of the fractions were made to determine the level at which electrons from sulphite and thiosulphate enter the respiratory chain. Active sites for thiosulphate are probably strictly(More)