Learn More
We have developed and validated a methodology for determining the antibody composition of the polyclonal serum response after immunization. Pepsin-digested serum IgGs were subjected to standard antigen-affinity chromatography, and resulting elution, wash, and flow-through fractions were analyzed by bottom-up, liquid chromatography-high-resolution tandem(More)
Isolation of antigen-specific monoclonal antibodies (mAbs) and antibody fragments relies on high-throughput screening of immortalized B cells or recombinant antibody libraries. We bypassed the screening step by using high-throughput DNA sequencing and bioinformatic analysis to mine antibody variable region (V)-gene repertoires from bone marrow plasma cells(More)
DNA synthesis techniques and technologies are quickly becoming a cornerstone of modern molecular biology and play a pivotal role in the field of synthetic biology. The ability to synthesize whole genes, novel genetic pathways, and even entire genomes is no longer the dream it was 30 years ago. Using little more than a thermocycler, commercially synthesized(More)
Arginases catalyze the divalent cation-dependent hydrolysis of L-arginine to urea and L-ornithine. There is significant interest in using arginase as a therapeutic antineogenic agent against L-arginine auxotrophic tumors and in enzyme replacement therapy for treating hyperargininemia. Both therapeutic applications require enzymes with sufficient stability(More)
A challenge in the computational design of enzymes is that multiple properties, including substrate binding, transition state stabilization and product release, must be simultaneously optimized, and this has limited the absolute activity of successful designs. Here, we focus on a single critical property of many enzymes: the nucleophilicity of an active(More)
Mutation of surface residues to charged amino acids increases resistance to aggregation and can enable reversible unfolding. We have developed a protocol using the Rosetta computational design package that "supercharges" proteins while considering the energetic implications of each mutation. Using a homology model, a single-chain variable fragment antibody(More)
Reengineering protein surfaces to exhibit high net charge, referred to as "supercharging", can improve reversibility of unfolding by preventing aggregation of partially unfolded states. Incorporation of charged side chains should be optimized while considering structural and energetic consequences, as numerous mutations and accumulation of like-charges can(More)
Several bacterial solute transport mechanisms involve members of the periplasmic binding protein (PBP) superfamily that bind and deliver ligand to integral membrane transport proteins in the ATP-binding cassette, tripartite tricarboxylate transporter, or tripartite ATP-independent (TRAP) families. PBPs involved in ATP-binding cassette transport systems have(More)
The phnD gene of Escherichia coli encodes the periplasmic binding protein of the phosphonate (Pn) uptake and utilization pathway. We have crystallized and determined structures of E. coli PhnD (EcPhnD) in the absence of ligand and in complex with the environmentally abundant 2-aminoethylphosphonate (2AEP). Similar to other bacterial periplasmic binding(More)
As the availability of DNA sequence information has grown, so has the need to replicate DNA sequences synthetically. Synthetically produced DNA sequences allow the researcher to exert greater control over model systems and allow for the combinatorial design and construction of novel metabolic and regulatory pathways, as well as optimized protein-coding(More)