Aleksandr A Kuchmizhak

Learn More
A type of laser-induced surface relief nanostructure-the nanocrown-on thin metallic films was studied both experimentally and theoretically. The nanocrowns, representing a thin corrugated rim of resolidified melt and resembling well-known impact-induced water-crown splashes, were produced by single diffraction-limited nanosecond laser pulses on thin gold(More)
Separate nanoholes with the minimum size down to 35 nm (~λ/15) and nanohole arrays with the hole size about 100 nm (~λ/5) were fabricated in a 50 nm optically "thick" Au/Pd film, using single 532 nm pump nanosecond laser pulses focused to diffraction-limited spots by a specially designed apertureless dielectric fiber probe. Nanohole fabrication in the(More)
In this work, we demonstrate an all-laser method of fabrication of optical nanoantennas (ONAs) with an additional coupling/focusing diffractive element. This method is based on double-shot femtosecond laser nanoablation of a thin supported metallic film, inducing a sequence of electrodynamic (surface plasmon-polariton [SPP] excitation and interference),(More)
We present a novel optical element - fiber microaxicon (FMA) for laser radiation focusing into a diffraction-limited spot with Bessel-like profile as well as for precision laser nanostructuring of metal film surfaces. Using the developed FMA for single-pulse irradiation of Au/Pd metal films on quartz substrate we have demonstrated the formation of submicron(More)
Surface-enhanced Raman scattering (SERS) and surface-enhanced photoluminescence (SEPL) are emerging as versatile widespread methods for biological, chemical, and physical characterization in close proximity of nanostructured surfaces of plasmonic materials. Meanwhile, single-step, facile, cheap, and green technologies for large-scale fabrication of(More)
Donut-shaped laser radiation, carrying orbital angular momentum, namely optical vortex, was recently shown to provide vectorial mass transfer, twisting transiently molten material and producing chiral micro-scale structures on surfaces of different bulk materials upon their resolidification. In this paper, we show that at high-NA focusing nanosecond laser(More)
We investigate numerically and experimentally the possibility of development of a cavity-based probe for near-field optical microscopy systems based on a fiber Fabry-Perot interferometer with a subwavelength protruding aperture. It was shown that the probe provides a spatial resolution of no worse than λ/37 for λ=1550 nm.
The fabrication method of the high-quality fiber microaxicons (FMAs) on the endface of the optical fiber was developed. Using several types of the commercially available optical fibers we experimentally demonstrated the fabrication of a high-quality FMA focusing a laser beam into a tiny spot with a FWHM≈0.6λ and Bessel-like field distribution. It was also(More)
Hollow reduced-symmetry resonant plasmonic nanostructures possess pronounced tunable optical resonances in the UV-vis-IR range, being a promising platform for advanced nanophotonic devices. However, the present fabrication approaches require several consecutive technological steps to produce such nanostructures, making their large-scale fabrication rather(More)
We demonstrate analytically and numerically that the detection of the spectral response of a single spherical Au nanoantenna allows one to map very small (down to 5·10(-4) RIU) variations of the refractive index of an optically transparent sample. Spectral shift of the dipole local plasmon resonance wavelength of the nanoantenna and the spectral sensitivity(More)