Aleksander Edelman

Learn More
BACKGROUND Treatments designed to correct cystic fibrosis transmembrane conductance regulator (CFTR) defects must first be evaluated in preclinical experiments in the mouse model of cystic fibrosis (CF). Mice nasal mucosa mimics the bioelectric defect seen in humans. The use of nasal potential difference (V(TE)) to assess ionic transport is a powerful test(More)
Oxidative stress plays a prominent role in the pathophysiology of cystic fibrosis (CF). Despite the presence of oxidative stress markers and a decreased antioxidant capacity in CF airway lining fluid, few studies have focused on the oxidant/antioxidant balance in CF cells. The aim of the current study was to investigate the cellular levels of reactive(More)
The ubiquitous ClC-2 Cl(-) channel is thought to contribute to epithelial Cl(-) secretion, but the distribution of the ClC-2 protein in human epithelia has not been investigated. We have studied the distribution of ClC-2 in adult human and rat intestine and airways by immunoblotting and confocal microscopy. In the rat, ClC-2 was present in the lateral(More)
Cystic fibrosis (CF) is caused by mutations in the CF gene, which encodes CF transmembrane conductance regulator protein (CFTR), a transmembrane protein that acts as a cAMP-regulated chloride channel The disease is characterized by inflammation but the relationship between inflammation, abnormal transepithelial ion transport, and the clinical manifestations(More)
Cystic fibrosis is a fatal human genetic disease caused by mutations in the CFTR gene encoding a cAMP-activated chloride channel. It is characterized by abnormal fluid transport across secretory epithelia and chronic inflammation in lung, pancreas, and intestine. Because cystic fibrosis (CF) pathophysiology cannot be explained solely by dysfunction of(More)
Cystic fibrosis (CF) is a frequent autosomal recessive disorder caused by mutation of a gene encoding a multifunctional transmembrane protein, the cystic fibrosis transmembrane conductance regulator (CFTR), located in the apical membrane of epithelial cells lining exocrine glands. In an attempt to get a more complete picture of the pleiotropic effects of(More)
BACKGROUND Cystic fibrosis (CF) is caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) protein, which acts as a chloride channel activated by cyclic AMP (cAMP). The most frequent mutation found in 70% of CF patients is F508del, while premature stop mutations are found in about 10% of patients. In vitro(More)
1 ABSTRACT The voltage-dependent ClC-2 chloride channel has been implicated in a variety of physiological functions including fluid transport across specific epithelia. ClC-2 is activated by hyperpolarization, weakly acidic external pH, intracellular Cl-and cell swelling. To add more insight into the mechanisms involved in ClC-2 regulation, we searched for(More)
Because neutrophil apoptosis plays a key role in resolving inflammation, identification of proteins regulating neutrophil survival should provide new strategies to modulate inflammation. Using a proteomic approach, coronin-1 was identified as a cytosolic protein cleaved during neutrophil apoptosis. Coronin-1 is an actin-binding protein that can associate(More)
The aim of this study was to search for lipid signatures in blood plasma from cystic fibrosis (CF) patients using a novel MALDI-TOF-ClinProTools strategy, initially developed for protein analysis, and thin layer chromatography coupled to MALDI-TOF (TLC-MALDI). Samples from 33 CF patients and 18 healthy children were subjected to organic extraction and(More)