Aleksandar Milicevic

Learn More
This paper describes the Korat tool for constraint-based generation of structurally complex test inputs for Java programs. Korat takes (1) an imperative predicate that speci fies the desired structural integrity constraints and (2) a finitization that bounds the desired test input size. Korat generates all inputs (within the bounds) for which the predicate(More)
The last decade has seen a dramatic growth in the use of constraint solvers as a computational mechanism, not only for analysis of software, but also at runtime. Solvers are available for a variety of logics but are generally restricted to first-order formulas. Some tasks, however, most notably those involving synthesis, are inherently higher order; these(More)
In an object-oriented language such as Java, every class requires implementations of two special methods, one for determining equality and one for computing hash codes. Although the specification of these methods is usually straightforward, they can be hard to code (due to subclassing, delegation, cyclic references, and other factors) and often harbor(More)
A main idea underlying bounded model checking is to limit the length of the potential counter-examples, and then prove properties for the bounded version of the problem. In software model checking, that means that only program traces up to a given length are considered. Additionally, the program’s input space must be made finite by defining bounds for all(More)
We present a unified environment for running declarative specifications in the context of an imperative object-Oriented programming language. Specifications are Alloy-like, written in first-order relational logic with transitive closure, and the imperative language is Java. By being able to mix imperative code with executable declarative specifications, the(More)
We present novel algorithms for parallel testing of code that takes structurally complex test inputs. The algorithms build on the Korat algorithm for constraint-based generation of structurally complex test inputs. Given an imperative predicate that specifies the desired structural constraints and a finitization that bounds the desired input size, Korat(More)
A <i>dependability case</i> is an explicit, end-to-end argument, based on concrete evidence, that a system satisfies a critical property. We report on a case study constructing a dependability case for the control software of a medical device. The key novelty of our approach is a lightweight code analysis that generates a list of side conditions that(More)
We present αRby—an embedding of the Alloy language in Ruby— and demonstrate the benefits of having a declarative modeling language (backed by an automated solver) embedded in a traditional object-oriented imperative programming language. This approach aims to bring these two distinct paradigms (imperative and declarative) together in a novel way. We argue(More)