Aleksandar Lazarevic

Learn More
Many real world data mining applications involve learning from imbalanced data sets. Learning from data sets that contain very few instances of the minority (or interesting) class usually produces biased classifiers that have a higher predictive accuracy over the majority class(es), but poorer predictive accuracy over the minority class. SMOTE (Synthetic(More)
Outlier detection has recently become an important problem in many industrial and financial applications. In this paper, a novel feature bagging approach for detecting outliers in very large, high dimensional and noisy databases is proposed. It combines results from multiple outlier detection algorithms that are applied using different set of features.(More)
This paper gives an overview of our research in building rare class prediction models for identifying known intrusions and their variations and anomaly/outlier detection schemes for detecting novel attacks whose nature is unknown. Experimental results on the KDDCup’99 data set have demonstrated that our rare class predictive models are much more efficient(More)
Outlier detection has recently become an important problem in many industrial and financial applications. This problem is further complicated by the fact that in many cases, outliers have to be detected from data streams that arrive at an enormous pace. In this paper, an incremental LOF (local outlier factor) algorithm, appropriate for detecting outliers in(More)
Intrusion detection corresponds to a suite of techniques that can be used to identify attacks against computers and network infrastructures. Anomaly detection is a key element of intrusion detection systems in which perturbations of normal behavior suggest the presence of intentionally or unintentionally induced attacks, faults, defects, etc. Several(More)
This paper introduces the Minnesota Intrusion Detection System (MINDS), which uses a suite of data mining techniques to automatically detect attacks against computer networks and systems. While the long-term objective of MINDS is to address all aspects of intrusion detection, this paper focuses on two specific contributions: (i) an unsupervised anomaly(More)
This paper introduces the Minnesota Intrusion Detection System (MINDS), which uses a suite of data mining techniques to automatically detect attacks against computer networks and systems. While the long-term objective of MINDS is to address all aspects of intrusion detection, in this paper we present two specific contributions. First, we present MINDS(More)