Learn More
In magnetic drug delivery, therapeutic magnetizable particles are typically injected into the blood stream and magnets are then used to concentrate them to disease locations. The behavior of such particles in-vivo is complex and is governed by blood convection, diffusion (in blood and in tissue), extravasation, and the applied magnetic fields. Using(More)
A nanoparticle delivery system termed dynamic magnetic shift (DMS) has the potential to more effectively treat metastatic cancer by equilibrating therapeutic magnetic nanoparticles throughout tumors. To evaluate the feasibility of DMS, histological liver sections from autopsy cases of women who died from breast neoplasms were studied to measure vessel(More)
Any single permanent or electro magnet will always attract a magnetic fluid. For this reason it is difficult to precisely position and manipulate ferrofluid at a distance from magnets. We develop and experimentally demonstrate optimal (minimum electrical power) 2-dimensional manipulation of a single droplet of ferrofluid by feedback control of 4 external(More)
Magnetic drug delivery refers to the physical confinement of therapeutic magnetic nanoparticles to regions of disease, tumors, infections and blood clots. Predicting the effectiveness of magnetic focusing in vivo is critical for the design and use of magnetic drug delivery systems. However, current simple back-of-the-envelope estimates have proven(More)
Magnetic fields have the potential to noninvasively direct and focus therapy to disease targets. External magnets can apply forces on drug-coated magnetic nanoparticles, or on living cells that contain particles, and can be used to manipulate them in vivo. Significant progress has been made in developing and testing safe and therapeutic magnetic constructs(More)
An automated system was developed to image the 3-D distribution of fluorescent magnetic nanoparticles in tissue samples. It enables easy measurement of magnetic nanoparticle distributions, for small and large tissue samples (currently up to a maximum size of ), in 3-D, with about 70 resolution in plane and 1 in the vertical direction. There is a linear(More)
The ability to use magnets external to the body to focus therapy to deep tissue targets has remained an elusive goal in magnetic drug targeting. Researchers have hitherto been able to manipulate magnetic nanotherapeutics in vivo with nearby magnets but have remained unable to focus these therapies to targets deep within the body using magnets external to(More)
This article presents a method to investigate how magnetic particle characteristics affect their motion inside tissues under the influence of an applied magnetic field. Particles are placed on top of freshly excised tissue samples, a calibrated magnetic field is applied by a magnet underneath each tissue sample, and we image and quantify particle(More)
It is difficult to deliver drugs into the inner ear because it is located deep in the skull and isolated from general circulation by the blood-labyrinth barrier. The standard-of-care for treating sudden hearing loss and other hearing problems has been to either inject steroids trans-tympanically into the middle ear and to rely on free diffusion of drugs(More)
Title of Document: IMAGE-GUIDED PRECISION MANIPULATION OF CELLS AND NANOPARTICLES IN MICROFLUIDICS Zachary Cummins, Doctor of Philosophy, 2016 Directed By: Professor Benjamin Shapiro, Fischell Department of Bioengineering Manipulation of single cells and particles is important to biology and nanotechnology. Our electrokinetic (EK) tweezers manipulate(More)