Learn More
Why does regeneration occur? And why, when it manifests itself, does it do so in some but not all metazoan species? Hence, what are the permissive or inhibitory factors operating behind this phenomenon? When it comes to regeneration, many questions, such as these, remain unanswered. In fact, the problem of animal regeneration has withstood the probing of(More)
The singular regenerative abilities of planarians require a population of stem cells known as neoblasts. In response to wounding, or during the course of cell turnover, neoblasts are signaled to divide and/or differentiate, thereby replacing lost cell types. The study of these pluripotent stem cells and their role in planarian regeneration has been severely(More)
We have identified two genes, smedwi-1 and smedwi-2, expressed in the dividing adult stem cells (neoblasts) of the planarian Schmidtea mediterranea. Both genes encode proteins that belong to the Argonaute/PIWI protein family and that share highest homology with those proteins defined by Drosophila PIWI. RNA interference (RNAi) of smedwi-2 blocks(More)
The principles underlying regeneration in planarians have been explored for over 100 years through surgical manipulations and cellular observations. Planarian regeneration involves the generation of new tissue at the wound site via cell proliferation (blastema formation), and the remodeling of pre-existing tissues to restore symmetry and proportion(More)
After amputation, freshwater planarians properly regenerate a head or tail from the resulting anterior or posterior wound. The mechanisms that differentiate anterior from posterior and direct the replacement of the appropriate missing body parts are unknown. We found that in the planarian Schmidtea mediterranea, RNA interference (RNAi) of beta-catenin or(More)
The Hedgehog (Hh) signaling pathway plays multiple essential roles during metazoan development, homeostasis, and disease. Although core protein components are highly conserved, the variations in Hh signal transduction mechanisms exhibited by existing model systems (Drosophila, fish, and mammals) are difficult to understand. We characterized the Hh pathway(More)
Many long-lived organisms, including humans, can regenerate some adult tissues lost to physical injury or disease. Much of the previous research on mechanisms of regeneration has focused on adult stem cells, which give rise to new tissue necessary for the replacement of missing body parts. Here we report that apoptosis of differentiated cells complements(More)
Planarians have been used as a model to study development and regeneration for more than 200 years. Research on these animals has traditionally focused on surgical and pharmacological manipulations. Recently, the dissection of planarians has become more molecular in nature. The isolation of thousands of expressed sequence tags and the introduction of in(More)
The study of planarian regeneration may help us to understand how we can rebuild organs and tissues after injury, disease or ageing. The robust regenerative abilities of planarians are based upon a population of totipotent stem cells (neoblasts), and among the organs regenerated by these animals is a well-organized central nervous system. In recent years,(More)
Freshwater planarians possess remarkable regenerative abilities that make them one of the classic model organisms for the study of regeneration. These free-living members of the phylum Platyhelminthes are representatives of the simplest triploblastic organisms possessing bilateral symmetry and cephalization. Furthermore, planarians occupy an important(More)