Alejandro Ortega-Moñux

Learn More
We propose a multimode interference coupler (MMI) design for high-index-contrast technologies based on a shallowly etched multimode region, which is, for the first time to our knowledge, directly coupled to deeply etched input and output waveguides. This reduces the phase errors associated with the high-index contrast, while still allowing for a very(More)
Grating couplers are an efficient means for fiber to chip coupling, as they require no facet preparation and enable wafer scale testing. While grating couplers are commonly used in silicon wire waveguides, their application to micrometric silicon-on-insulator rib waveguides is complicated due to the presence of high-order Bloch modes. We study the Bloch(More)
The design and fabrication of an ultracompact silicon-on-insulator polarization converter is reported. The polarization conversion with an extinction ratio of 16 dB is achieved for a conversion length of only 10 μm. Polarization rotation is achieved by inducing a vertical asymmetry by forming in the waveguide core two subwavelength trenches of different(More)
We present several fundamental photonic building blocks based on suspended silicon waveguides supported by a lateral cladding comprising subwavelength grating metamaterial. We discuss the design, fabrication, and characterization of waveguide bends, multimode interference devices and Mach-Zehnder interferometers for the 3715 - 3800 nm wavelength range,(More)
We propose an ultra-broadband multimode interference (MMI) coupler with a wavelength range exceeding the O, E, S, C, L and U optical communication bands. For the first time, the dispersion property of the MMI section is engineered using a subwavelength grating structure to mitigate wavelength dependence of the device. We present a 2 × 2 MMI design with a(More)
We present a new type of mid-infrared silicon-on-insulator (SOI) waveguide. The waveguide comprises a sub-wavelength lattice of holes acting as lateral cladding while at the same time allowing for the bottom oxide (BOX) removal by etching. The waveguide loss is determined at the wavelength of 3.8 μm for structures before and after being underetched using(More)
We explore, to the best of our knowledge, the potential of diffractionless subwavelength grating waveguides for sensing applications. We show that by subwavelength patterning of silicon-wire waveguides the field delocalization can be engineered to increase the sensitivity. Fully vectorial 3D-FDTD simulations confirm the sensitivity enhancement, achieving(More)
A simple strategy for accurately recovering discontinuous functions from their Fourier series coefficients is presented. The aim of the proposed approach, named spectrum splitting (SS), is to remove the Gibbs phenomenon by making use of signal-filtering-based concepts and some properties of the Fourier series. While the technique can be used in a vast range(More)
Directional couplers are extensively used devices in integrated optics, but suffer from limited operational wavelength range. Here we use, for the first time, the dispersive properties of sub-wavelength gratings to achieve a fivefold enhancement in the operation bandwidth of a silicon-on-insulator directional coupler. This approach does not compromise the(More)
A polarization rotator, suitable for integration in a polarization diversity optical receiver fabricated in InP technology, is proposed. The device, based on a two steps waveguide rotator, includes tapered input and output ports that provide very low insertion loss (<0.04 dB). An extinction ratio of 40 dB at 1550 nm wavelength is calculated, comparable or(More)