Alejandro Mendoza-Coto

Learn More
We study two dimensional stripe forming systems with competing repulsive interactions decaying as r −α. We derive an effective Hamiltonian with a short-range part and a generalized dipolar interaction which depends on the exponent α. An approximate map of this model to a known XY model with dipolar interactions allows us to conclude that, for α < 2(More)
We show that in order to describe the isotropic-nematic transition in stripe-forming systems with isotropic competing interactions of the Brazovskii class it is necessary to consider the next to leading order in a 1/N approximation for the effective Hamiltonian. This can be conveniently accomplished within the self-consistent screening approximation. We(More)
Two coarse-grained models which capture some universal characteristics of stripe forming systems are studied. At high temperatures, the structure factors of both models attain their maxima on a circle in reciprocal space, as a consequence of generic isotropic competing interactions. Although this is known to lead to some universal properties, we show that(More)
  • 1