Learn More
As with any organ, differences in brain size--after adequate control of allometry--are assumed to be a response to selection. With over 200 species and an astonishing diversity in niche preferences and social organization, Tanganyikan cichlids present an excellent opportunity to study brain evolution. We used phylogenetic comparative analyses of sexed(More)
The vertebrate brain is composed of several interconnected, functionally distinct structures and much debate has surrounded the basic question of how these structures evolve. On the one hand, according to the 'mosaic evolution hypothesis', because of the elevated metabolic cost of brain tissue, selection is expected to target specific structures mediating(More)
Morphological traits are often genetically and/or phenotypically correlated with each other and such covariation can have an important influence on the evolution of individual traits. The strong positive relationship between brain size and body size in vertebrates has attracted a lot of interest, and much debate has surrounded the study of the factors(More)
Urban regions are among the most human-altered environments on Earth and they are poised for rapid expansion following population growth and migration. Identifying the biological traits that determine which species are likely to succeed in urbanized habitats is important for predicting global trends in biodiversity. We provide the first evidence for the(More)
Male reproductive success is influenced by competitive interactions during precopulatory and postcopulatory selective episodes. Consequently, males can gain reproductive advantages during precopulatory contest competition by investing in weaponry and during postcopulatory sperm competition by investing in ejaculates. However, recent theory predicts male(More)
The basis for our knowledge of brain evolution in vertebrates rests heavily on empirical evidence from comparative studies at the species level. However, little is still known about the natural levels of variation and the evolutionary causes of differences in brain size and brain structure within-species, even though selection at this level is an important(More)
Theory suggests that sexual traits evolve faster than ecological characters. However, characteristics of a species niche may also influence evolution of sexual traits. Hence, a pending question is whether ecological characters and sexual traits present similar tempo and mode of evolution during periods of rapid ecological divergence, such as adaptive(More)
The size of the vertebrate brain is shaped by a variety of selective forces. Although larger brains (correcting for body size) are thought to confer fitness advantages, energetic limitations of this costly organ may lead to trade-offs, for example as recently suggested between sexual traits and neural tissue. Here, we examine the patterns of selection on(More)
Analyses of the macroevolutionary correlates of brain structure volumes allow pinpointing of selective pressures influencing specific structures. Here we use a multiple regression framework, including phylogenetic information, to analyze brain structure evolution in 43 Tanganyikan cichlid species. We analyzed the effect of ecological and sexually selected(More)