Learn More
In this paper, a new technique coined two-dimensional principal component analysis (2DPCA) is developed for image representation. As opposed to PCA, 2DPCA is based on 2D image matrices rather than 1D vectors so the image matrix does not need to be transformed into a vector prior to feature extraction. Instead, an image covariance matrix is constructed(More)
This paper examines the theory of kernel Fisher discriminant analysis (KFD) in a Hilbert space and develops a two-phase KFD framework, i.e., kernel principal component analysis (KPCA) plus Fisher linear discriminant analysis (LDA). This framework provides novel insights into the nature of KFD. Based on this framework, the authors propose a complete kernel(More)
In this paper, we show how the concept of statistical deformation models (SDMs) can be used for the construction of average models of the anatomy and their variability. SDMs are built by performing a statistical analysis of the deformations required to map anatomical features in one subject into the corresponding features in another subject. The concept of(More)
An active shape model segmentation scheme is presented that is steered by optimal local features, contrary to normalized first order derivative profiles, as in the original formulation [Cootes and Taylor, 1995, 1999, and 2001]. A nonlinear kNN-classifier is used, instead of the linear Mahalanobis distance, to find optimal displacements for landmarks. For(More)
Three-dimensional (3-D) imaging of the heart is a rapidly developing area of research in medical imaging. Advances in hardware and methods for fast spatio-temporal cardiac imaging are extending the frontiers of clinical diagnosis and research on cardiovascular diseases. In the last few years, many approaches have been proposed to analyze images and extract(More)
A novel method is introduced for the generation of landmarks for three-dimensional (3-D) shapes and the construction of the corresponding 3-D statistical shape models. Automatic landmarking of a set of manual segmentations from a class of shapes is achieved by 1) construction of an atlas of the class, 2) automatic extraction of the landmarks from the atlas,(More)
In this paper, a statistical shape analysis method for myocardial contraction is presented that was built to detect and locate regional wall motion abnormalities (RWMA). For each slice level (base, middle, and apex), 44 short-axis magnetic resonance images were selected from healthy volunteers to train a statistical model of normal myocardial contraction(More)
In this paper we introduce the concept of statistical deformation models (SDM) which allow the construction of average models of the anatomy and their variability. SDMs are build by performing a statistical analysis of the deformations required to map anatomical features in one subject into the corresponding features in another subject. The concept of SDMs(More)