Alejandro Araya

Learn More
Cytoplasmic male sterility in plants is associated with mitochondrial dysfunction. We have proposed that a nuclear-encoded chimeric peptide formed by mitochondrial sequences when imported into the mitochondria may impair organelle function and induce male sterility in plants. A model developed to test this hypothesis is reported here. Assuming that the(More)
RNA editing of subunit 9 of the wheat mitochondrial ATP synthase has been studied by cDNA and protein sequence analysis. Most of the cDNA clones sequenced (95%) showed that editing by C-to-U transitions occurred at eight positions in the coding region. Consequently, 5 amino acids were changed in the protein when compared with the sequence predicted from the(More)
The maize mitochondrial genome does not contain a gene coding for ribosomal protein S14. In this paper we show that the functional rps14 gene was translocated to the nucleus and acquired the signals conferring expression and product targeting to the mitochondrion in a way not previously described. Transferred rps14 was found integrated between both exons of(More)
Frataxin, a protein crucial for the biogenesis of mitochondria in different organisms, was recently identified in Arabidopsis thaliana. To investigate the role of frataxin in higher plants, we analyze two knock-out and one knock-down T-DNA insertion mutants. The knock-out mutants present an embryo-lethal phenotype, indicating an essential role for frataxin.(More)
We characterized the transcriptomic response of transgenic plants carrying a mitochondrial dysfunction induced by the expression of the unedited form of the ATP synthase subunit 9. The u-ATP9 transgene driven by A9 and APETALA3 promoters induce mitochondrial dysfunction revealed by a decrease in both oxygen uptake and adenine nucleotides (ATP, ADP) levels(More)
The bulk of the secretion of the subcommissural organ is formed by glycoproteins that appear to be derived from two precursor forms of 540 and 320 kDa. Upon release into the ventricle, these glycoproteins aggregate to form Reissner’s fiber. We report the isolation of three cDNA clones from a cDNA library prepared from bovine subcommissural organ RNA, by(More)
The transfer of genetic information from the mitochondrion to the nucleus is thought to be still underway in higher plants. The mitochondrial genome of Arabidopsis thaliana contains only one rps14 pseudogene. In this paper we show that the functional gene encoding mitochondrial ribosomal protein S14 has been translocated to the nucleus. This gene transfer(More)
RNA editing in higher plant mitochondria modifies mRNA sequences by means of C-to-U conversions at highly specific sites. To determine the cis elements involved in recognition of an editing site in plant mitochondria, deletion and site-directed mutation constructs containing the cognate cox II mitochondrial gene were introduced into purified mitochondria by(More)
In maize, the functional gene encoding mitochondrial ribosomal protein S14 (rps14) has been translocated to the nucleus where it became integrated between both exons of a gene encoding the iron-sulfur subunit of succinate dehydrogenase (sdh2). Two transcripts are generated from this locus by alternative splicing. One transcript encodes a precursor for a(More)
Three genes from Arabidopsis thaliana with high sequence similarity to gamma carbonic anhydrase (γCA), a Zn containing enzyme from Methanosarcina thermophila(CAM), were identified and characterized. Evolutionary and structural analyses predict that these genes code for active forms of γCA. Phylogenetic analyses reveal that these Arabidopsis gene products(More)