Learn More
BACKGROUND Carboxypeptidase G enzymes hydrolyze the C-terminal glutamate moiety from folic acid and its analogues, such as methotrexate. The enzyme studied here, carboxypeptidase G2 (CPG2), is a dimeric zinc-dependent exopeptidase produced by Pseudomonas sp. strain RS-16. CPG2 has applications in cancer therapy: following its administration as an(More)
Ricin is a potent plant toxin which acts by removing a specific adenine residue from the ribosome. The X-ray crystal structure of a new, tetragonal crystal form of the recombinant ricin A-chain diffracting to 1.8 A resolution has been determined via molecular replacement methods and refined to a crystallographic R-factor of 18.6%. The higher resolution(More)
The adenovirus single-stranded DNA binding protein (Ad DBP) is a multifunctional protein required, amongst other things, for DNA replication and transcription control. It binds to single- and double-stranded DNA, as well as to RNA, in a sequence-independent manner. Like other single-stranded DNA binding proteins, it binds ssDNA, cooperatively. We report the(More)
BACKGROUND Pore-forming colicins are water-soluble bacteriocins capable of binding to and translocating through the Escherichia coli cell envelope. They then undergo a transition to a transmembrane ion channel in the cytoplasmic membrane leading to bacterial death. Colicin N is the smallest pore-forming colicin known to date (40 kDa instead of the more(More)
Aerolysin is chiefly responsible for the pathogenicity of Aeromonas hydrophila, a bacterium associated with diarrhoeal diseases and deep wound infections. Like many other microbial toxins, the protein changes in a multistep process from a completely water-soluble form to produce a transmembrane channel that destroys sensitive cells by breaking their(More)
Colicins are antibiotic proteins produced by and active against sensitive Escherichia coli and closely related bacteria. They can adsorb to specific receptors located at the external surface of the outer membrane of sensitive cells, and are then translocated to their specific targets within these cells. The largest group of colicins comprises those which(More)
The E1 subgroup (E1, A, B, IA, IB, K and N) of anti-bacterial toxins called colicins is known to form voltage-dependent channels in lipid bilayers. The crystal structure of the pore-forming domain of colicin A from Escherichia coli has been refined to the diffraction limit of the crystals at 2.4 A resolution by means of molecular dynamics and restrained(More)
Pyruvate dehydrogenase kinase (PDHK) regulates the activity of the pyruvate dehydrogenase multienzyme complex. PDHK inhibition provides a route for therapeutic intervention in diabetes and cardiovascular disorders. We report crystal structures of human PDHK isozyme 2 complexed with physiological and synthetic ligands. Several of the PDHK2 structures(More)
The recently determined three-dimensional structure of the pore-forming domain of colicin A has led to a hypothetical model for membrane insertion and channel formation. Certain features of this model have implications for understanding the mechanism of membrane insertion by other toxins and may have a broader relevance to protein transport in general.
Colicins are plasmid-encoded protein antibiotics which kill bacteria closely related to the producing strain (generally Escherichia coli). The study of the function of colicins has revealed many features which reflect common targeting and translocation mechanisms with bacteriophages and toxins. Like many toxins, colicins are composed of structural domains(More)