Aleš Svatoš

Learn More
Selection pressure exerted by insects and microorganisms shapes the diversity of plant secondary metabolites. We identified a metabolic pathway for glucosinolates, known insect deterrents, that differs from the pathway activated by chewing insects. This pathway is active in living plant cells, may contribute to glucosinolate turnover, and has been recruited(More)
When Manduca sexta attacks Nicotiana attenuata, fatty acid-amino acid conjugates (FACs) in the larvae's oral secretions (OS) are introduced into feeding wounds. These FACs trigger a transcriptional response that is similar to the response induced by insect damage. Using two-dimensional gel electrophoresis, matrix-assisted laser desorption ionization-time of(More)
Intraspecific olfactory signals known as pheromones play important roles in insect mating systems. In the model Drosophila melanogaster, a key part of the pheromone-detecting system has remained enigmatic through many years of research in terms of both its behavioral significance and its activating ligands. Here we show that Or47b-and Or88a-expressing(More)
The spatial distribution of plant defenses within a leaf may be critical in explaining patterns of herbivory. The generalist lepidopteran larvae, Helicoverpa armigera (the cotton bollworm), avoided the midvein and periphery of Arabidopsis thaliana rosette leaves and fed almost exclusively on the inner lamina. This feeding pattern was attributed to(More)
In deceptive pollination, insects are bamboozled into performing nonrewarded pollination. A prerequisite for the evolutionary stability in such systems is that the plants manage to generate a perfect sensory impression of a desirable object in the insect nervous system [1]. The study of these plants can provide important insights into sensory preference of(More)
Camalexin represents the main phytoalexin in Arabidopsis (Arabidopsis thaliana). The camalexin-deficient phytoalexin deficient 3 (pad3) mutant has been widely used to assess the biological role of camalexin, although the exact substrate of the cytochrome P450 enzyme 71B15 encoded by PAD3 remained elusive. 2-(Indol-3-yl)-4,5-dihydro-1,3-thiazole-4-carboxylic(More)
Glucosinolates are biologically active secondary metabolites that display both intra- and interspecific variation in the order Brassicales. Glucosinolate profiles have not been interpreted within a phylogenic framework and little is known regarding the processes that influence the evolution of glucosinolate diversity at a macroevolutionary scale. We have(More)
The siderophore-producing ability of nickel-resistant Streptomyces acidiscabies E13 and the role of the elicited siderophores in promoting plant growth under iron and nickel stress are described. Siderophore assays indicated that S. acidiscabies E13 can produce siderophores. Electrospray ionization mass spectrometry (ESI-MS) revealed that the bacterium(More)
A total of eleven alkali-released, aromatic compounds were identified by HPLC, MS and NMR analyses in cell wall extracts from Arabidopsis thaliana roots. Nine of them together constituted the three complete series of 4-hydroxy-, 4-hydroxy-3-methoxy, and 4-hydroxy-3,5-dimethoxy-substituted benzaldehydes, benzoic acids and cinnamic acids. The other two were(More)
Levels of indolic and phenylpropanoid secondary metabolites in Arabidopsis (Arabidopsis thaliana) leaves undergo rapid and drastic changes during pathogen defense, yet little is known about this process in roots. Using Arabidopsis wild-type and mutant root cultures as an experimental system, and the root-pathogenic oomycete, Pythium sylvaticum, for(More)