Learn More
Acute quadriplegic myopathy (AQM; also called "critical illness myopathy") shows acute muscle wasting and weakness and is experienced by some patients with severe systemic illness, often associated with administration of corticosteroids and/or neuroblocking agents. Key aspects of AQM include muscle atrophy and myofilament loss. Although these features are(More)
BACKGROUND The limb girdle muscular dystrophies (LGMD) are a heterogeneous group of Mendelian disorders highlighted by weakness of the pelvic and shoulder girdle muscles. Seventeen autosomal loci have been so far identified and genetic tests are mandatory to distinguish among the forms. Mutations at the calpain 3 locus (CAPN3) cause LGMD type 2A. (More)
Two brothers with myopathic coenzyme Q10 (CoQ10) deficiency responded dramatically to CoQ10 supplementation. Muscle biopsies before therapy showed ragged-red fibers, lipid storage, and complex I + III and II + III deficiency. Approximately 30% of myofibers had multiple features of apoptosis. After 8 months of treatment, excessive lipid storage resolved,(More)
To determine whether redox factor-1 (Ref-1) participates in the pathogenesis of inclusion-body myositis (IBM), we immunolocalized Ref-1 in muscle biopsies of IBM patients by light- and electron-microscopy. Approximately 70-80% of the IBM vacuolated muscle fibers had focal inclusions strongly immunoreactive for Ref-1. By immunoelectronmicroscopy, Ref-1 was(More)
Mutations in the gene encoding survival motor neuron (SMN) protein are found in > 98% of patients with autosomal-recessive spinal muscular atrophy. We investigated the possible role of SMN in normal and abnormal human muscle by immunostaining biopsies of 20 patients with various neuromuscular diseases using monoclonal antibodies against SMN. SMN was(More)
Alpha-synuclein (alpha-syn) is an important component of neuronal and glial inclusions in brains of patients with several neurodegenerative disorders. Sporadic inclusion-body myositis (s-IBM) is the most common progressive muscle disease of older patients. Its muscle phenotype shows several similarities with Alzheimer disease brain. A distinct feature of(More)
The authors found that the neural cell adhesion molecule (NCAM) is hyposialylated in hereditary inclusion body myopathy (HIBM) muscle, as suggested by its decreased molecular weight by Western blot. This abnormality represented the only pathologic feature differentiating HIBM due to GNE mutations from other myopathies with similar clinical and pathologic(More)
Growing evidence supports the importance of ubiquitin ligases in the pathogenesis of muscular disorders, although underlying mechanisms remain largely elusive. Here we show that the expression of RNF5 (aka RMA1), an ER-anchored RING finger E3 ligase implicated in muscle organization and in recognition and processing of malfolded proteins, is elevated and(More)
Mutations of the GNE gene are responsible for autosomal recessive hereditary inclusion-body myopathy (HIBM). In this study we searched for the presence of any significant abnormality of alpha-dystroglycan (alpha-DG), a highly glycosylated component of the dystrophin-glycoprotein complex, in 5 HIBM patients which were previously clinically and genetically(More)
Neprilysin (NEP, EP24.11), a metallopeptidase originally shown to modulate signalling events by degrading small regulatory peptides, is also an amyloid-beta- (Abeta) degrading enzyme. We investigated a possible role of NEP in inclusion body myositis (IBM) and other acquired and hereditary muscle disorders and found that in all myopathies NEP expression was(More)