Alcides Xavier Benicasa

Learn More
There are several real situations in which it is useful to have a system able to detect a specific target or a salient object and its localization in a given image in autonomous way. To guide the attention based on known characteristics of an object and primitive information of the image is not a trivial task for visual attention. Several works about visual(More)
There are several real situations in which it is useful to have a system able to detect a salient object and its localization in a given scene in autonomous way. Among these systems are robot vision systems that must detect determined objects, security systems, that must detect stranger people or objects in environment. These systems need to present a very(More)
Research in qualitative models of visual attention has mainly focused on the bottom-up guidance of early visual features. Here we propose a new model which combine both bottom-up and top-down modulation into the visual selection model. The proposed model is composed of five main components: a Visual Feature Extraction module, a LEGION network for image(More)
Analysis and recognition of objects in complex scenes is a demanding task for a computer. There is a selection mechanism, named visual attention, that optimizes the visual system, in which only the important parts of the scene are considered at a time. In this work, an object-based visual attention model with both bottom-up and top-down modulation is(More)
This article presents a method of autonomous navigation for mobile robots using a hybrid architecture, composed of mapping and probabilistic techniques of reinforcement learning (RL). The robot must first learn the limits of the environment and how to move intelligently between distinct points. For the simulation environment we used the software Player and(More)
In this paper, a new visual selection model is proposed, which combines both early visual features and object-based visual selection modulations. This model integrates three main mechanisms. The first is responsible for the segmentation of the scene allowing the identification of objects. In the second one, the average of saliency of each object is(More)
Real scenes are composed of multiple points possessing distinct characteristics. Selectively, only part of the scene undergoes scrutiny at a time, and the mechanism responsible for this task is named selective visual attention. Spatial location with the highest contrast might highlight from scene reaching level of awareness (bottom-up attention). On the(More)