Learn More
Large amounts of adenosine 5'-triphosphate (ATP) released from cellular sources under pathological conditions such as ischemia may activate purinoceptors of the P2X and P2Y types. In the present study, the expression of the P2X7 receptor-subtype in the brain cortex of spontaneously hypertensive rats was investigated using a permanent focal cerebral ischemia(More)
The upregulation of extracellular matrix components, especially chondroitin sulfate proteoglycans, after brain injury and stroke is known to accompany the glial reaction, forming repellent scars that hinder axonal growth and the reorganization of the injured neuronal networks. The extracellular matrix associated with perineuronal nets (PNs) in the primarily(More)
Current responses to N-methyl-D-aspartate (NMDA) in layer V pyramidal neurons of the rat prefrontal cortex were potentiated by the P2 receptor agonists adenosine 5'-triphosphate (ATP) and uridine 5'-triphosphate (UTP). The failure of these nucleotides to induce inward current on fast local superfusion suggested the activation of P2Y rather than P2X(More)
Permanent middle cerebral artery occlusion (MCAO) causes neurodegeneration and a robust activation of glial cells primarily in sensorimotor brain regions of rats. It has been shown that hyperbaric oxygen (HBO) increases oxygen supply to ischaemic areas and reduces neuronal cell loss. The effects of HBO treatment on microgliosis and astrogliosis in permanent(More)
Hyperbaric oxygen treatment has been suggested as able to reduce hypoxia induced neuronal damage. The aim of the study was to compare the impact of different reoxygenation strategies on early metabolical (purine nucleotide content determined by HPLC) and morphological changes (index of cell injury after celestine blue/acid fuchsin staining) of hypoxically(More)
In a first series of experiments, the morphological changes of corticoencephalic cells by ischaemia were determined by staining with celestine blue-acid fuchsin in order to classify cells as intact, dark basophilic (supposedly reversibly injured) and preacidophilic or acidophilic (profoundly injured). Hypoxia and glucose-deprivation (in vitro ischaemia)(More)
Neuronally enriched primary cerebrocortical cultures were exposed to glucose-free medium saturated with argon (in vitro ischemia) instead of oxygen (normoxia). Ischemia did not alter P2X7 receptor mRNA, although serum deprivation clearly increased it. Accordingly, P2X7 receptor immunoreactivity (IR) of microtubuline-associated protein 2 (MAP2)-IR neurons or(More)
The outcome of immune responses can be predicted by the lymphokine production pattern of the participating cells. Cytokines of the T helper type 1 (Th1) cells mediate inflammatory responses and delayed-type hypersensitivity (DTH), whereas Th2-like T cells predominantly produce cytokines, which stimulate antibody production by B cells. Immunoregulatory(More)
The function of adenosine A(2A) receptors, localized at the enkephalin-containing GABAergic medium spiny neurons of the striatum, has been discussed controversially. Here we show that, in the absence of external Mg(2+), the adenosine A(2A) receptor agonist CGS 21680 postsynaptically depressed the NMDA, but not the non-NMDA (AMPA/kainate) receptor-mediated(More)
Subcutaneous application of interferon-beta1b (IFN-beta1b) is an established therapy for patients with relapsing-remitting multiple sclerosis (RRMS), but early side effects are still a major concern. In vitro studies with myelin basic protein (MBP)-specific T-cell lines revealed a synergistic suppressive effect of IFN-beta1b and the phosphodiesterase(More)