Albertus H . De Boer

Learn More
 Taking the binding of fusicoccin to plasma membranes as an indicator of complex formation between the 14-3-3 dimer and H+-ATPase, we assessed the effect of osmotic stress on the interaction of these proteins in suspension-cultured cells of sugar beet (Beta vulgaris L.). An increase in osmolarity of the cell incubation medium, accompanied by a decrease in(More)
Xylem parenchyma cells are situated around the (apoplastic) xylem vessels and are involved in the control of the composition of the xylem sap by exporting and resorbing solutes. We investigated properties of the K+ inward rectifier in the plasma membrane of these cells by performing patch clamp experiments on protoplasts in the whole-cell configuration.(More)
14-3-3 proteins form a family of highly conserved proteins with central roles in many eukaryotic signalling networks. In plants, they bind to and activate the plasma membrane H+-ATPase, creating a binding site for the phytotoxin fusicoccin. Barley 14-3-3 transcripts accumulate in the epidermis upon inoculation with the powdery mildew fungus. We have(More)
Protein phosphorylation is essential for many aspects of plant growth and development. To fully modulate the activity of specific proteins after phosphorylation, interaction with members of the 14-3-3 family is necessary. 14-3-3 Proteins are important for many processes because they “assist” a wide range of target proteins with divergent functions. In this(More)
The effect of oxygen on the trans-root potential (TRP) of excised roots in Plantago media L. and P. maritima L. was investigated. Two distinct reactions were found. In some experiments (type A roots) the reaction of TRP to anoxia was bi-phasic, and this reaction fits well into a model, assuming the presence of two spatially separated proton pump sites in(More)
The activation kinetics of outward currents in protoplasts from barley root xylem parenchyma was investigated using the patch-clamp technique. The K+ outward rectifying conductance (KORC), providing the main pathway for K+ transport to the xylem, could be described in terms of a Hodgkin-Huxley model with four independent gates. Gating of KORC depended on(More)
The role of ion flux in controlling morphogenetic events during embryonic development and regeneration is becoming increasingly recognized as an important component alongside well-studied biochemical factors (Borgens et al., 1989; Nuccitelli, 1992; Robinson and Messerli, 1996; Altizer et al., 2001; Levin, 2003a). In particular, H+ flux and the resulting pH(More)
Although there is consensus that the slow vacuolar or SV channel is a Ca2+ release channel, the underlying mechanism of operation is still controversial. The main reason is that the voltage sensitivity of SV gating seems to exclude activation at hyperpolarized (physiological) membrane potentials. Inspired by a study of Gambale et al. (1993) and supported by(More)
In plant cells the cell wall is a formidable obstacle in many physiological studies such as patch-clamp measurements and cell labelling with antibodies. Enzymatic digestion of the cell wall, in order to release a protoplast, has a number of disadvantages; therefore we worked out an alternative method to gain access to the plasma membrane. The wall of(More)
In order to study the mechanism and regulation of K+ resorption from the xylem by the cells that border the xylem vessels (the xylem parenchyma cells), K+ inward-rectifying channels (KIRCs) in the plasma membrane of xylem parenchyma cells from Hordeum vulgare L. cv. Apex were studied using the patch-clamp technique. In the inside-out configuration, three(More)